为了更好地了解北美和非洲山相关啮齿动物的高海拔高度(海拔3000 m)的功能形态适应,我们使用Microct扫描来获取3D图像和3D形态计量方法来计算内骨体积和颅内长度。这是对北美克里西特小鼠物种的113个低海拔和高海拔种群(两种peromyscus物种,n = 53),以及两个部落的非洲沼泽啮齿动物(五种,五个物种,n = 49)和protaomyini(四种,n = 11)。我们检验了两个不同的假设,即高海拔种群如何在高海拔种群中有所不同:昂贵的组织假设,该假设预测大脑和内部的体积将减少以降低大脑增长和维持大脑的成本;以及脑海中的假设,该假设预测,将作为直接表型效应或适应可容纳大脑肿胀并从而最大程度地减少高度疾病的病理症状的适应性。在校正了颅尺寸的一般异态变化后,我们发现在北美的peromyscus小鼠和非洲层压板(Otomys)大鼠中,高地啮齿动物的核心体积比低较低的啮齿动物较小,与昂贵的组织假设一致。在前组中,peromyscus小鼠,不仅是从高海拔和低海拔的野生捕获的小鼠中获得的,而且还从那些在普通园生实验室条件下从高度或低海拔捕获的父母中获得了颅骨。我们在这些小鼠中的结果表明,脑大小对升高的反应可能具有强大的遗传基础,这反应了相反但对脑量的较弱的影响。这些结果可能表明,选择可以在高海拔高度下减少小型哺乳动物的大脑体积,但是需要进一步的实验来评估该结论的一般性和潜在机制的性质。
认为“碎石路不是高速公路”。对大脑的损害意味着患有FASD的学生可能需要比同龄人更努力地工作才能完成他们所需的每项任务。这反过来会导致疲劳,如果对它们的需求太高,则超负荷。
“在国家危机时期进行这项复杂的临床研究,当我们的医院系统受到严重压力时这些发现现在可能会改变我们如何理解和治疗病毒后神经系统状况的景观。它还证实了长卷的神经系统症状是可以测量大脑的真实和可证明的代谢和血管变化的。”
经颅超声刺激(TUS)已成为一种无创神经调节的有前途的技术,但是当前系统缺乏有效靶向深脑结构的精确性。在这里,我们引入了一个先进的TUS系统,该系统在深脑神经调节中实现了前所未有的精度。该系统具有256个元素,头盔形的换能器阵列在555 kHz下运行,并与立体定位系统,个性化的治疗计划以及使用功能性MRI进行实时监控。在一系列实验中,我们证明了系统在视觉皮层中选择性调节侧向元素核(LGN)及其功能连接区域的活性的能力。参与者在同时进行的TU和视觉刺激期间表现出显着增加的视觉皮层活性,并且在各个个体之间具有很高的可重复性。此外,theta-burst Tus方案诱导了鲁棒的神经调节作用,刺激后至少40分钟观察到视觉皮层活性降低。通过对照实验证实,这些神经调节作用是针对靶向LGN的特异性的。我们的发现突出了这种先进的TUS系统对以高精度和特异性调节深脑回路的潜力,为研究脑功能和开发针对神经系统和精神疾病的靶向疗法提供了新的途径。前所未有的空间分辨率和延长的神经调节作用证明了该技术在研究和临床应用中的变革潜力,为非侵入性深层大脑神经调节的新时代铺平了道路。
摘要:组织培养物,尤其是脑器官的分析,进行了高度的协调,测量和监测。我们已经开发了一个自动化的研究平台,使独立设备能够实现以反馈驱动的细胞培养研究实现协作目标。由物联网(IoT)体系结构统一,我们的方法可以在各种感应和驱动设备之间进行连续的,交流的互动,从而实现了对体外生物学实验的准时控制。该框架整合了微流体,电生理学和成像装置,以维持脑皮质器官并监测其神经元活性。类器官是用定制的3D打印室进行培养的,该腔室附着在商业微电极阵列上,用于电生理监测。使用可编程的微流体泵实现周期性喂养。我们开发了抽吸培养基的计算机视觉量估计,达到了高精度,并使用了反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过比较手动和自动化方案的7天研究对系统进行了为期7天的研究。自动化的实验样品在整个实验过程中保持了强大的神经活性,与对照样品相当。自动化系统启用了每小时的电生理记录,该记录揭示了在每天一次的录音中未观察到神经元发射率的巨大时间变化。
1。斯坦福大学神经外科系2。Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。 3。 美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4. VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。 工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。3。美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4.VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学工程学院,布朗大学,美国普罗维登斯,美国,美国6。Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学
Stobart补充说,触摸对象时人类在繁忙十字路口的高峰时段的流量就像高峰时段一样。“星形胶质细胞是将信息流向目的地的交通信号灯。当NMDA受体信号在星形胶质细胞中破坏时,就像左转的左转光一样。某些信息流可以通过交叉路口直接继续,但没有左转意味着某些信息无法达到目标。”
[3]德国穆尼奇技术大学TUM医学院神经病学系[4]德国穆尼奇技术大学TUM医学院Tum-NeuroImaging Center。[5]德国穆斯特大学穆斯特大学的转化精神病学研究所。[6]慕尼黑大学慕尼黑技术大学TUM医学院跨学科医学中心
摘要次数下器器官(SCO)是位于大脑中西尔维乌斯渡槽入口处的腺体。它存在于与两栖动物和人类一样远的物种中,但其功能在很大程度上是未知的。为了探索其功能,我们比较了SCO和非SCO脑区域的转录组,并发现了SPO,CAR3和SPDEF的三个基因,它们在SCO中高度表达。在胚胎发育过程中,这些基因内源性启动子/增强子元素表达CRE重物组合酶的小鼠菌株用于遗传烧蚀SCO细胞,从而导致严重的脑积水和神经元迁移和神经元素轴突的神经元迁移和发育的缺陷。无偏的肽组分析表明,三种SCO衍生的肽富集,即胸腺素β4,胸腺素β10和NP24,并将其重新引入SCO启动的脑室心室,主要救出了发育缺陷。一起,这些数据确定了SCO在大脑发育中的关键作用。
