HORT创新,应用园艺研究PTY Ltd(AHR)和RM Consulting Group(RMCG)不做任何陈述,并明确否认此事实表中有关信息的准确性,完整性或货币的所有保证(在法律允许的范围内)。此材料的用户应在任何方式依靠其准确性之前采取独立行动。依赖HORT创新,AHR或RMCG提供的任何信息完全承担您自身的风险。Hort Innovation, AHR or RMCG are not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation, AHR, RMCG or any other person's negligence or otherwise) from your use or non-use of information from project MT22004 - Soil Wealth and Integrated Crop Protection - Phase 3 or from reliance on information contained在此材料或Hort创新中,AHR或RMCG通过任何其他方式向您提供。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 8 月 10 日发布。;https://doi.org/10.1101/2022.08.09.503242 doi:bioRxiv preprint
农杆菌介导的转化是一种将外源基因转化为植物的广泛使用的方法。烟草(Nicotiana tabacum L.)是遗传转化中的模型植物。下面描述了将烟草用作模型植物的几个原因如下:(1)烟草叶片很容易被器官发生再生(Constantin等,1977)。(2)当植物需要从实验室转移到温室状况时,烟草植物很容易采用环境的变化(Chandra等,2010; Jube&Borthakur,2007)。良好采用环境会提高再生率。(3)烟草植物的生物量产量很高,因此可以轻松生产重组蛋白来用于分子种植(Twyman等,2003)。如今,烟草的分子遗传学和基因组图进行了充分的研究,几乎完成了(Jube&Borthakur,2007)。烟草中遗传转化的研究和应用为其他植物的转化系统提供了前景和参考。
POD破碎是农业相关性的一种特征,可确保植物在其本地环境中取代种子,并在几种宽阔的农作物中受到了驯化和选择的驯化和选择。然而,豆荚破碎会导致菜籽(甘蓝纳普斯L.)作物的显着屈服降低。衍生自B. rapa/b的种间繁殖线BC95042。Napus Cross表现出改善的POD破碎阻力(比易碎的B. Napus品种高达12倍)。为了揭示新品种中的遗传基础并改善了POD破碎的耐药性,我们分析了F 2和F 2:3衍生的种群,来自BC95042和Advanced Breeding系列的交叉,BC95041,并用15,498 Dartseq标记的基因分型。通过基因组扫描,间隔和包容性的复合间隔映射分析,我们确定了与POD破裂能量相关的七个定量性状基因座(QTL),用于POD破碎的抗性或POD强度的度量,并且它们位于A02,A02,A03,A03,A05,A09,A09,A09和C01 Chromosomes上。两种亲本线都为豆荚碎片抗性贡献了等位基因。我们确定了添加剂X添加剂,添加性优势和优势X优势X在A01/C01,A01/C01,A03/A07,A07/C03,A03,A03/C03和C01/C02染色体之间的相互作用之间的五对X添加剂,添加剂优势和优势X优势相互作用。QTL对A03/ A07和A01/ C01的影响处于排斥阶段。比较映射确定了几种候选基因(AG,ABI3,BP1,CEL6,FIL,FIL,FUL,GA2OX2,IND,LATE,LEUNIG,MAGL15,RPL,QRT2,RGA,RGA,SPT,SPT和TCP10),基于QTL和QTL的QTL和上毒QTL相互作用,以实现pod shatter pod shatter shatter shatter shatter shatter shatter shatter shatters。BNAA09G05500D受到在A02,A03和A09上检测到的三个QTL靠近(富有成果的)同源物BNAA03G39820D和BNAAA09G05500D。着眼于FUL,我们研究了推定的图案,序列变体和其同源物的进化速率,373个重新设备的B. napus napus感兴趣。
gibberellin(GA)在控制胸前Rapa茎发育中起着重要作用。作为GA信号转导的基本负调节剂,Della蛋白可能对茎发育产生重大影响。然而,该调节基础的调节机制尚不清楚。在这项研究中,我们使用BrapdS(植物脉络化酶)和Brargl1(关键DELLA蛋白)基因中的CRISPR/CAS9基因编辑系统报告了高效和遗传的诱变。我们观察到由于GRAS结构域中的两个氨基酸而引起的Brargl1功能丧失突变。Brargl1突变体的花芽分化和螺栓固定时间明显进展。在这些突变体中,Ga-调控蛋白(Bragasa6),开花相关基因(BrasoC1,Bralfy),膨胀蛋白(BRAEXPA11)和木聚糖蛋白(BraxTH3)基因的表达也显着上调。brargl1-过表达的植物显示了对比的表型。brargl1突变体对GA信号传导更敏感。brargl1与Brasoc1相互作用,而GA 3处理后的相互作用强度降低。此外,BRARGL1抑制了BrasoC1对Braxth3和Bralfy基因的转录激活能力,但是GA 3的存在增强了BrasoC1的激活能力,这表明Brargl1-Brasoc1模块调节B. Rapa通过GA信号转移的B. Rapa的开花。因此,我们假设brargl1被降解,并且在GA 3存在下释放了Brasoc1,从而促进了braxth3和bralfy的表达,从而诱导了Rapa的茎发育。此外,Brargl1-M突变体促进了花蕾的分化,而不会影响茎的质量。因此,brargl1可以作为早期成熟品种分子繁殖的宝贵靶标。
基因组编辑技术,例如成簇的规律间隔短回文重复序列/CRISPR 相关系统 (CRISPR/Cas9),无疑正在成为改良粮食作物和应对农业挑战不可或缺的工具。在本研究中,评估了影响转化效率的关键因素,例如 PEG4000 浓度、孵育时间和质粒量,以实现将 CRISPR/Cas9 载体有效递送到卷心菜原生质体中。使用扩增子测序,我们证实了 PEG4000 浓度和孵育时间对诱导的目标突变有显著影响。通过优化转化方案,以 40 µg 质粒和 50% PEG4000 孵育 15 分钟,实现了 26.4% 的编辑效率。虽然这些因素强烈影响突变率,但转化原生质体的活力仍然很高。我们的发现将有助于成功编辑卷心菜和其他芸苔属植物的基因组,也有助于依赖原生质体瞬时转化方法的基因功能分析和亚细胞定位等研究领域。
2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。
全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要孤儿基因(OG S)是特定分类群独有的基因,在原代新陈代谢中起着至关重要的作用。然而,对于我们先前的研究中鉴定出的铜管rapa og s(brog s)的功能意义知之甚少。为了研究其生物学功能,我们在拟南芥中开发了43个基因的Brog过表达(Brog OE)突变库,并评估了植物的表型变异。我们发现43个Brog OE突变体中有19个表现出突变体表型,而42个显示出可变的糖含量。选择了一个突变体Brog1 OE,具有显着升高的果糖,葡萄糖和总糖含量,但蔗糖含量降低,以进行深度分析。Brog1 OE显示出拟南芥合成酶基因(ATSUS)的表达和活性降低;但是,转化酶的活性没有变化。In contrast, silencing of two copies of BrOG1 in B. rapa, BraA08002322 ( BrOG1A ) and BraSca000221 ( BrOG1B ), by the use of an ef fi cient CRISPR/Cas9 system of Chinese cabbage ( B. rapa ssp.campestris)由于brsus1b,brsus3的上调,果糖,葡萄糖和总可溶性糖含量降低,并且特定于编辑的Brog1转基因线中的BRSUS5基因。此外,我们观察到蔗糖含量增加和Brog1突变体中的SUS活性,转化酶的活性保持不变。因此,Brog1可能以SUS依赖性方式影响了可溶性糖代谢。这是研究Brog S在可溶性糖代谢方面的功能的第一份报告,并强化了OG S是营养代谢的宝贵资源的观念。