不断增长的人口和不断变化的环境引起了全球粮食安全的重大关注,目前几种重要农作物的改善率不足以满足未来需求1。这种缓慢的改善率部分归因于作物植物的长代时代。在这里,我们提出了一种称为“速度育种”的方法,该方法大大缩短了生成时间并加速了繁殖和研究计划。速度繁殖可用于春季麦(Triticum aestivum),硬脂小麦(T. durum),大麦(大麦(Hordeum vulgare)),鹰嘴豆(Cicer arietinum)和Pea(Pisum sativum)和4代Canola(brassica napus),代替2-3的情况下,可用于实现多达6代的春季。 我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。 在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。 通过发光二极管(LED)补充照明节省成本。 我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。可用于实现多达6代的春季。我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。通过发光二极管(LED)补充照明节省成本。我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。
Cow -pea(Vigna Unguiculata L.)是一种未充分利用的蔬菜豆类土著,主要在非洲种植和消费。但是,它在农业生产和消费方面的影响力在全球范围内已扩大。这种有弹性的作物以承受各种环境压力的能力而闻名,使其适合小型农民常用的边际作物生产系统。尽管cow豆具有对干旱的耐受性,但它对盐度胁迫和生物剂尤其敏感。对干旱的耐受程度在不同的品种之间有所不同,这需要进一步的研究才能开发出更多的弹性品种。不断变化的气候模式和相关的不确定性凸显了迫切需要繁殖更多弹性和生产性的牛皮品种。传统的植物育种技术产生了新的牛p,但是耕种的牛皮纸中的遗传多样性有限,为未来的传统繁殖工作带来了挑战。新的育种技术(NBT),包括基因编辑工具,单碱基对改变和DNA甲基化方法,为加速牛港改善提供了有希望的替代方法。然而,这种方法还面临着与组织培养中器官发生(OG)和体细胞胚发生(SE)成功相关的挑战。本综述研究了组织培养的挑战和进步,以提高cow豆生产力和针对非生物和生物胁迫的韧性。
森林生态系统是世界上最大的碳汇之一,在陆地生物多样性和碳封存中发挥着关键作用。树木是重要的可持续资源,是农艺和经济特性的丰富来源,可提供木材、纸浆和纸张、纤维相关产品、能源和化学产品。在过去的几十年里,常规杂交育种有助于产生具有改良农艺和经济特性的植物品种。然而,林业中的常规杂交育种耗时长,已达到瓶颈。因此,需要注意改善树种的生长和农艺及经济重要性状。由于高质量基因组组装和注释工具、基因识别技术和高效基因编辑的发展,生物技术最近在作物育种方面取得了巨大进展。但与作物相比,还需要开展大量工作来组装和注释高质量基因组,鉴定调控农艺和经济重要性状的关键基因,并在表现出高杂合性的树种中进行高效的基因编辑。本前沿研究主题旨在介绍林木基因组学领域的最新基础发现,包括针对与关键农艺和经济重要性状相关的基因和途径的遗传学研究、次生生长调控的分子机制以及生物技术在木本植物遗传改良中的潜在应用。本卷分为以下部分:(1)基因组组装和注释;(2)调节树木生长、维管发育和应激反应的关键基因的功能鉴定;(3)木本植物的遗传转化和基因编辑。
•加拿大政府在2018年宣布,这将帮助农业部门创新,成长和竞争,从而减少对加拿大植物育种创新法规的不确定性。•在2019年,加拿大政府在其监管路线图上致力于制定澄清指导,估计时间为1 - 2年。•在2020年,联邦部门(包括农业和加拿大农业食品,CFIA和加拿大卫生部)与广泛的利益相关者合作,开发了严格的基于科学的建议。•在2021年,政府进行了完全公开和包容的咨询,并考虑了所有回应。•加拿大卫生部在2022年5月发布了有关此主题的最新指南,行业利益相关者被告知,CFIA的指导已经准备好,并计划于2022年10月发布。
摘要 本简报概述了有机食品和农业运动对作物育种可持续性的理解。作为欧洲有机伞组织 IFOAM Organics Europe,以及欧盟机构中有机食品的代言人,我们撰写了这份文件,以评估和反驳欧盟委员会在植物育种可持续性特征方面狭隘而有问题的方法。欧盟委员会在所谓的“新基因组技术”(NGT)立法提案中对我们的农业食品系统的可持续性和创新的方法,特别是在育种领域,存在重大缺陷。产品或农业生产系统不能仅基于给定的植物品种而被宣布为“可持续”,更不用说特性了。此外,从抗虫到抗旱,基因工程对可持续性的所谓好处目前都是基于假设,仍然是理论上的行业承诺。虽然需要育种创新,但没有捷径可以规避我们食品系统的复杂性。因此,育种不应沦为使用基因工程。过去几十年有机农业的丰富经验表明,依靠多种策略和工具以及生态系统相互作用,从农业生态学角度看待我们的食品系统,才能创造长期的复原力。有机育种采用以生物多样性和生态系统健康为核心的系统方法,为农业的可持续性和创新提供了有弹性的途径。在本次简报中,两个案例研究展示了有机育种在向可持续生产系统转型方面的成功。有机育种采用包容性的参与式育种系统,提供了具有环境和社会经济效益的社会创新方法。这些方法与通过侵犯品种和性状的知识产权将遗传资源垄断到少数跨国公司手中形成鲜明对比,而这种垄断是通过基因工程合法化的。
黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
甘蔗是世界上最重要的糖和能源作物。在甘蔗育种期间,技术是需求,方法是手段。我们知道,种子是甘蔗产业发展的基石。Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses.Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic生物学,结合遥感和深度学习等信息技术。鉴于此,我们从技术和方法的角度专注于甘蔗育种,回顾了主要历史,指出了当前的状态和挑战,并为智能育种前景提供了合理的前景。
本综述总结了对植物育种中定量性状的仿真研究的发现,并将这些见解转化为实际方案。作为农业生产力面临着越来越多的挑战,植物育种对于解决这些问题至关重要。模拟使用数学模型来复制生物条件,桥接理论和实践,通过验证假设早期并优化遗传增益和资源使用。虽然策略可以提高特质价值,但它们会降低遗传多样性,从而结合方法。研究强调了将策略与性状遗传力和选择时间保持一致的重要性,并保持遗传多样性,同时考虑基因型 - 环境相互作用,以避免早期选择中的偏见。在精确的标记放置时,使用标记会加速繁殖周期,前景和背景选择是平衡的,并且有效地管理了QTL。基因组选择通过缩短育种周期和改善父级的选择来增加遗传增长,尤其是对于低遗传力性状和复杂的遗传结构而言。定期更新培训集至关重要,无论遗传结构如何。贝叶斯方法在较少的基因和早期的繁殖周期中表现良好,而BLUP对于具有许多QTL的性状更为强大,而RR-Blup在不同条件下证明了灵活性。有明确的目标和足够的种质可用时,较大的人群会带来更大的收益。准确性在几代人中下降,受到遗传结构和人口规模的影响。对于低遗传力性状,多特征分析提高了准确性,尤其是与高遗传力性状相关时。更新包括表现最佳的候选人,但保存可变性可提高提高和准确性。低密度基因分型和插补为高密度基因分型提供具有成本效益的替代方法,从而获得了可比的结果。靶向种群优化遗传关系,进一步提高准确性和繁殖结果。评估基因组选择揭示了短期收益与长期潜力和快速循环基因组计划之间的平衡。多样化的方法保留了稀有等位基因,实现了显着的收益并保持多样性,并突出了在优化繁殖成功方面的权衡。
受控环境农业(CEA)代表了园艺发展最快的部门之一。在受控环境中的生产范围从具有100%人工照明(垂直农场或植物工厂)到具有或没有补充照明的高科技温室,再到简单的温室和高隧道范围。尽管粮食生产发生在高隧道内的土壤中,但大多数CEA操作都使用各种水培系统来满足作物灌溉和生育需求。CEA的扩展提供了有望作为增加城市及其附近粮食生产的工具,因为这些系统不依赖可耕地的农业土地。此外,CEA通过在保护性结构内部生长提供了对气候不稳定的韧性。从CEA系统收获的产品往往具有高质量的内部和外部,并且受到消费者的追捧。目前,CEA生产商依靠在开放式农业中生产的品种。由于CEA的高能量和其他生产成本,只有有限数量的食品作物证明自己是生产的预曲。导致这种情况的一个因素可能缺乏优化的品种。室内生长的操作为这些系统理想的繁殖品种提供了机会。为了促进这些专业品种的繁殖,可以为植物育种者提供多种工具,以帮助加快这一过程并提高其效率。它还回顾了许多可用于基因组知识育种,标记辅助选择的工具,本评论旨在满足繁殖机会和需求,以便在CEA系统中已经生产过多种园艺作物,或者具有CEA生产潜力。