也是在本世纪初,编辑们要求许多作者宣布他们对下一个植物育种的愿景。随着1990年代遗传学的许多突破,1998年我们一个人(Ortiz,1998)宣布,在下一世纪,植物育种将高度依赖于分子标记,GM和整个基因组测序。当时,双单倍体技术的激增以及计算能力不可否认的增加引起了该作者的注意。这当然并不是唯一对遗传学和基因组学最终将导致粮食安全世界的突破的评论(Borem&Kothe Milach,1998年)。Bosemark(1995)和Lee(1998)建议,分子标记物的使用可能会导致选择强度的提高和探索更广泛的可变性的可能性。Cooper等。(1999)通过暗示如何使用分子标记来对特征和环境之间的复杂定量遗传相互作用进行统计学模型,并最终能够使用计算模型来采取更有效的繁殖决策,从而采取了略有不同的立场。与此相符,Hill等。(1998)在其定量遗传学书中定义了通过环境相互作用(G×E)采用最新生物识别方法来实现较高遗传增长的重要性(GGS,Safi&Price,1998)。但是,遗传学并不是吸引作者的唯一方面。混合农作物的伟大成功也激发了几位作者在世纪之交,呼吁另一种尝试将更多的自授粉作物转化为混合系统(Ratnalikar&Singh,1998)。植物生理学的一些创新还引发了对育种者可以部署的表型方法的新构想(Jackson等,1996),包括使用一些新型实验室设备来预测情节水平的工业适用性,例如近膜反射率光谱(NIRS)用于更换湿化学(Batten,1998年)。也是农艺师开始广泛促进零耕种和保护农业的时间(Avery,1997; Plucknett&Winkelmann,1995)。
植物品种保护法赋予所有育种者自由经营的权利,使他们能够使用市场上所有常规育种品种来培育更优良的品种并独立销售。专利并不能赋予这种经营自由——许可平台只会产生新的依赖关系
摘要:必须修订和更新生物技术政策和法规,以反映植物育种技术的最新进展。基因编辑等新型植物育种技术 (NPBT) 已被用于解决植物育种中的无数挑战,而使用 NPBT 作为新兴生物技术工具引发了法律和伦理问题。本研究旨在强调基因编辑在现有文献中的操作方式,并研究植物育种基因编辑的伦理和法律问题的关键问题。我们进行了系统的文献综述 (SLR),以提供围绕这一主题的伦理和法律论述的现状。我们还确定了在设计植物育种基因编辑的未来治理时必须解决的关键研究优先领域和政策差距。
基因组选择使用DNA信息来补充祖先信息和自己的绩效数据,以更准确地估计动物的遗传潜力(也是其后代)。所有犊牛都从父亲那里获得一半的DNA,但这是一个随机的一半,因此必须对动物进行基因分型,以确定其收到的一半以及一半如何影响广泛的性能性状;大坝也是如此。对动物的遗传优点的预测仍然只是预测。为了克服仍然存在的不确定性,应使用动物团队。这包括公牛团队的繁殖团队,但在选择基因分型小母牛时,小母牛团队应该是焦点而不是单个小母牛。表1。ICBF SIRE建议系统计算所选公牛团队的可靠性;目标斗牛团队的可靠性> 90%。使用一组公牛,还可以最大程度地减少受施肥能力损害施肥能力的单个公牛(甚至是个体射精的稻草)的风险,尤其是在使用性精液时。
水稻是我国的主要粮食作物,对国际粮食稳定有着重要贡献。随着水稻基因组测序、生物信息学和转基因技术的进步,我国科研人员发现了控制水稻产量的新基因,解析了遗传调控网络,建立了分子设计育种新框架,取得了许多变革性的成果。本文介绍了近年来我国在水稻产量性状研究方面的一些突破和分子设计育种方面的一系列成果,综述了产量性状相关功能基因的鉴定与克隆以及水稻功能基因的分子标记开发,以期对下一步的分子设计育种工作及进一步提高水稻产量起到借鉴作用。
大麻Sativa L.是一种古老的农作物,用于生产和种子的生产,尤其是其用于医学的大麻素含量和作为麻醉药。由于其中一种化合物,四氢大麻酚(THC)的迷幻作用,许多国家也对大麻生长的法规或乐队也作为纤维或种子作物。最近,随着这些法规中的许多规定越来越严格,对这种作物的许多用途的兴趣正在增加。大麻是富裕和高度异质的,使传统的繁殖昂贵且耗时。此外,在不改变大麻素的情况下引入新特征可能很难。使用新育种技术进行基因组编辑可能会解决这些问题。成功使用基因组编辑需要有关合适靶基因的序列信息,该靶基因是一种基因组编辑工具,可以引入植物组织中,并具有从转化的细胞中再生植物的能力。本综述总结了大麻育种的当前状态,在新的育种技术时代发现了大麻的潜力和挑战,并最终提出了未来的重点领域,这些焦点可能有助于提高我们对大麻的整体理解并实现植物的潜力。
气候变化给葡萄栽培带来了许多威胁。人们已经制定了不同的策略来减轻这些影响,从创新的葡萄园管理方法和精准葡萄栽培到培育更适应环境挑战的新品种和砧木。表观遗传学是指基因组功能的可遗传变化,不受 DNA 序列变异的影响。最近发现表观遗传记忆可以介导植物对环境的适应和适应,这为应对气候变化的植物改良提供了新的杠杆,而不会对遗传信息产生重大影响。这可以通过使用压力的表观遗传记忆和/或通过在不改变遗传信息的情况下以新的表观等位基因的形式创造表观遗传多样性来实现。事实上,葡萄藤是一种多年生嫁接克隆繁殖植物,因此具有表观遗传特异性。这些特异性需要已经在模型植物中开发的适应策略,但也提供了探索表观遗传记忆和多样性如何成为具有类似特性的植物快速适应环境的主要来源的机会。在这些策略中,使用不同类型的诱导剂进行一年一次和一年一次的植物启动可能提供有效的方式来更好地应对(非)生物胁迫。利用接穗和砧木之间的表观遗传交换和/或在基因组范围内创造非靶向表观遗传变异,或使用表观遗传编辑进行靶向变异,可能为葡萄树改良提供创新且有希望的途径,以应对气候变化带来的挑战。
豆类是重要的农作物,主要用于其谷物,富含蛋白质,矿物质和其他营养素,例如维生素,泡沫和抗氧化剂。豆类主要是自授粉的农作物,这意味着它们具有狭窄的遗传基础,这对作物改善计划构成了挑战。仍然,常规和现代繁殖方法在改善豆类作物的农艺特征,胁迫耐受性和营养品质方面显着贡献。传统的繁殖涉及将植物繁殖物暴露于诱变剂和/或越过两种或更多植物以产生具有所需特征的新一代,而现代育种方法包括分子育种,标记辅助选择和基因工程技术。通过这些方法,研究人员能够开发出提高产量,抗病性,耐旱性和营养品质(例如较高的蛋白质含量,铁,锌和其他必需微量营养素)的豆类品种。两种常规的现代繁殖方法在谷物作物中都取得了很大的成功,并且很少关注豆科农作物的改善。主要和未充分利用的豆类作物的遗传改善仍然是实现全球粮食安全和营养目标的主要挑战。该研究主题在遗传学领域的题为“过渡中的豆类育种:创新和前景”的遗传学主题介绍了一系列研究文章和评论,涵盖了种质多样性,转录组学,测序,基因组学,标记物,基因组繁殖,基因组繁殖,基因研究,基因学习algormity Algormits和Agrymits的新理解。
黄瓜是一种重要的植物作物,可提供可访问的基因组草案,它在分子遗传学各种领域都有明显的加快研究。黄瓜育种者一直在采用各种方法来提高作物的产量和质量。这些方法包括增强疾病抗性,使用妇科性别类型及其与Parthenocarpy的关联,植物建筑的改变以及遗传变异性的增强。性别表达的遗传学在黄瓜中是一个复杂的特征,但对于黄瓜作物的遗传改善来说是非常重要的。本综述包括对基因参与的当前状态及其表达研究,基因的遗传,分子标记物的遗传和与性别确定相关的基因工程的遗传,以及讨论乙烯在性别表达和性别确定基因ACS家族中的作用。毫无疑问,妇科是所有性别形式的黄瓜繁殖形式的重要特征,但是如果它与parthenocarppy相关,则可以在有利条件下更大程度地增强果实的产量。但是,关于雌雄同体的黄瓜中的parthenocarpy的信息很少。本评论阐明了性表达的遗传学和分子图,可能是有益的,特别是对黄瓜育种者和其他通过传统和分子助理方法进行农作物改善的科学家。