荷兰癌症研究所 Oncode 研究所分子病理学部1066CX 阿姆斯特丹,荷兰 2 荷兰癌症研究所 Oncode 研究所分子致癌作用分部,1066CX 阿姆斯特丹,荷兰 3 延世大学医学院江南 Severance 医院生物医学系统信息学系,首尔 03722,韩国 4 肿瘤蛋白质组学实验室,阿姆斯特丹 UMC 医学肿瘤学系,1081HV 阿姆斯特丹,荷兰 5 荷兰癌症研究所 Oncode 研究所细胞生物学分部,1066CX 阿姆斯特丹,荷兰 6 伯尔尼大学生物医学研究中心癌症治疗耐药性集群和伯尔尼精准医学中心,3088 伯尔尼,瑞士 7 伯尔尼大学 Vetsuisse 学院动物病理学研究所,3012 伯尔尼,瑞士 8 荷兰癌症研究所临床前干预部小鼠癌症和衰老诊所,1066CX 阿姆斯特丹,荷兰 9 这些作者贡献相同l.wessels@nki.nl (LFAW)、sven.rottenberg@vetsuisse.unibe.ch (SR)、j.jonkers@nki.nl (JJ) https://doi.org/10.1016/j.celrep.2023.112538
动机。给定一个字符串S,最小化方案是由三重(k,w,o)定义的算法,该算法从字符串s采样了k -mers(k -long substring)子集的子集。具体来说,它根据s中w连续k -mers的每个窗口中的o来采样最小的k -mer。由于连续的窗口可以采样相同的k -mer,因此采样的K -mers的集合通常比s小得多。这使最小化器成为多种工具,可在生物信息学中减少多个应用程序的内存足迹和处理时间,例如序列比较,组装,压实的de bruijn图形结构和序列索引。更一般地,我们考虑尊重窗口保证的基因带抽样算法:必须从连续k -mers的每个窗口中对至少一个k -mer进行采样。作为采样k -mer的绝对位置在s中的绝对位置唯一识别,我们可以将采样算法的密度定义为不同采样位置的比例。良好的方法具有低密度,通过尊重窗口保证,将限制为1 /w。但是,很难设计具有最佳密度的序列敏捷算法。实际上,通常使用伪随机哈希函数实现O级O,以获得所谓的随机最小化器。此方案非常易于实施,即使以流方式进行计算也非常快,并且易于分析。然而,它的密度几乎距离下限的大窗口几乎有2倍。先前的工作集中在理论和实践中,与随机最小化的密度相比,其密度较低的方法。尽管如此,这些方法仍然很难分析和直观地理解,并且并不总是像随机最小化器那样通用。
卵骨是一组多样的孢子形成生物,包括数百种臭名昭著的病原体。其中几个在全球隔离名单上,严格受国家和国际法律的监管,以防止其传播(Rossmann等人。,2021)。宿主包括主要的栽培鱼类和植物物种,以及天然生态系统中的许多动物和植物物种(Cao等人,2012年; Fern Andez-Ben Eitez等。,2008年; Kamoun等。,2015年; van den Berg等。,2013年)。卵形构成了一种分类学不同的和大的真核微生物,它与真菌具有某些生理和形态学特征(例如,菌丝的形成和不同的目的孢子类型),但在系统源上是与Heterokont Algae(Baldauf等人(Baldauf等,2000; latijnhouers et and; <,2003)。卵菌和真菌可以通过只有卵菌具有的几种生化和细胞学特征来区分:a)纤维素是其菌丝壁的主要微纤维成分; b)含有磷酸化的B - (1,3) - 米麦葡萄糖的细胞质致密体/纤维打印液泡; c)在配子形成之前的减数分裂的二倍体thalli; d)线粒体带有肾小管crista;最终e)A -ε-二氨基二酰胺酸赖氨酸合成途径(Beakes等,2012年)。在其系统发育多样性中反映了卵形壮成长的大量环境条件和宿主。,2017年)。,2012年; de Bruijn等。,2012年; Fabro等。,2011年)。在过去的几十年中,宿主的卵形相互作用研究结合了基因组学和转录组学对卵菌如何感染其宿主有了充分的了解(Burra等人。意识到许多相互作用的分子的作用对于针对性的管理策略而言至关重要。已经确定,卵蛋白分泌了一系列效应子蛋白,可修饰宿主的免疫系统以促进感染(Bozkurt等人然而,尚未在感染过程中由不同的卵菌病原体产生的大量分子。用于对这些体内的功能分析,以基因修改卵菌的技术,例如RNAi(Saraiva等,2014; Whisson等人,2005年),稳定的转换(Judelson等人。,1993)或CRISPR/CAS(Fang and Tyler,2016年)至关重要。与真菌相比,卵形的分子技术的发展速度较慢,并且与真菌相比,目前仅限于相对较少的物种,并且效率低。由于卵菌中的异质性,需要针对每个物种以及在物种中优化每个菌株的转移方案。因此是
卵菌是一类多样化的丝状产孢生物,由数百种臭名昭著的病原体组成。其中一些已被列入全球检疫名单,并受到国家和国际法律的严格管制,以防止其传播(Rossmann 等人,2021 年)。宿主包括主要养殖鱼类和植物物种,以及自然生态系统中的众多动物和植物物种(Cao 等人,2012 年;Fern andez-Ben eitez 等人,2008 年;Kamoun 等人,2015 年;van den Berg 等人,2013 年)。卵菌是一类在分类学上截然不同的真核微生物大类,它与真菌有一些相同的生理和形态特征(例如,都有菌丝和不同的孢子类型),但在系统发育上与异鞭毛藻有亲缘关系(Baldauf 等人,2000 年;Latijnhouwers 等人,2003 年)。卵菌与真真菌可通过一些只有卵菌才具备的生化和细胞学特征来区分:a) 纤维素是菌丝壁的主要微纤维成分;b) 胞质致密体/指纹液泡含有磷酸化的 β-(1,3)-mycolaminarin 葡聚糖;c) 二倍体叶状体,减数分裂先于配子形成;d) 线粒体有管状嵴;最后 e) 利用 a - ε -二氨基庚二酸赖氨酸合成途径 ( Beakes 等人,2012 年)。卵菌生长的环境条件和宿主范围广泛,这反映在其系统发育多样性中 ( Thines,2014 年)。在过去的几十年里,宿主与卵菌相互作用的研究结合基因组学和转录组学,对卵菌如何感染宿主有了相当深入的了解 ( Burra 等人,2017 年)。了解许多相互作用分子的作用对于有针对性地制定管理策略非常重要。已确定卵菌会分泌一系列效应蛋白,这些效应蛋白可以改变宿主的免疫系统以促进感染(Bozkurt 等人,2012 年;de Bruijn 等人,2012 年;Fabro 等人,2011 年)。然而,不同卵菌病原体在感染过程中产生的大量分子尚未得到解释。为了在体内对这些分子进行功能分析,对卵菌进行基因改造的技术至关重要,例如 RNAi(Saraiva 等人,2014 年;Whisson 等人,2005 年)、稳定转化(Judelson 等人,1993 年)或 CRISPR/Cas(Fang 和 Tyler,2016 年)。卵菌的分子技术发展速度比真菌慢,目前仅限于相对较少的物种,与真菌相比效率较低。由于卵菌内部的异质性,转化方案需要针对每个物种进行优化,并且在同一物种内,通常针对每个菌株进行优化。因此
