姓名:高松(地理老师)编辑。| 胡英杰,编辑。标题:地理空间人工智能手册/由高松、胡英杰和李文文编辑。其他标题:地理空间人工智能 说明:佛罗里达州博卡拉顿:CRC Press,2024 年。| 包括书目参考和索引。标识符:LCCN 2023030356(印刷版)| LCCN 2023030357(电子书)| ISBN 9781032311661(精装本)| ISBN 9781032311678(平装本)| ISBN 9781003308423(电子书)主题:LCSH:地理空间数据。| 人工智能。分类:LCC G70.217.G46 H26 2024(印刷版)| LCC G70.217.G46(电子书)| DDC 910.285/63--dc23/eng/20231016 LC 记录可在 https://lccn.loc.gov/2023030356 上获得 LC 电子书记录可在 https://lccn.loc.gov/2023030357 上获得
a 深圳大学总医院卡森国际肿瘤中心普通外科、消化系统肿瘤精准诊疗研究所,广东深圳 518055 b 深圳大学医学院生物医学工程学院、广东省生物医学测量与超声成像重点实验室、医学超声国家地方重点技术工程实验室,广东深圳 518060 c 国际肿瘤诊疗协会,广东深圳 518055 d 深圳大学医学院药学院,广东深圳 518060 e 山东中医药大学药学院,山东济南 250000 f 山东省第一医科大学、山东省医学科学院山东省肿瘤医院暨研究所放射肿瘤科,山东济南 250000 g 开罗大学兽医学院药理学系,12211埃及吉萨 h 土耳其埃尔祖鲁姆 25070 阿塔图尔克大学医学院医学药理学系 i 德国罗斯托克大学医学中心普通外科、分子肿瘤学和免疫治疗诊所 j 香港理工大学卫生科技及信息学系,香港特别行政区 999077,中国 k 中山大学附属第七医院肿瘤科,广东深圳 518107,中国
Abreu,R。C.,Hoffmann,W。A.,Vasconcelos,H。L.,Pilon,N。A.,Rossatto,D。R.和Durigan,G。(2017)。 热带稀树草原中碳质量的生物多样性成本。 科学进步,3(8),E1701284。 https://doi.org/10.1126/sciadv.1701284 Adams,M。A. (2013)。 巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。 森林生态与管理,294,250–261。 Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O. (2006)。 土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。 全球生物地球化学周期,20(3)。 https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S. 木质植物侵占:原因和后果。 在D. D. Briske中(编辑 ),牧场系统:过程,管理和挑战(pp。 25–84)。 Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Abreu,R。C.,Hoffmann,W。A.,Vasconcelos,H。L.,Pilon,N。A.,Rossatto,D。R.和Durigan,G。(2017)。热带稀树草原中碳质量的生物多样性成本。科学进步,3(8),E1701284。https://doi.org/10.1126/sciadv.1701284 Adams,M。A. (2013)。 巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。 森林生态与管理,294,250–261。 Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O. (2006)。 土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。 全球生物地球化学周期,20(3)。 https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S. 木质植物侵占:原因和后果。 在D. D. Briske中(编辑 ),牧场系统:过程,管理和挑战(pp。 25–84)。 Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。https://doi.org/10.1126/sciadv.1701284 Adams,M。A.(2013)。巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。森林生态与管理,294,250–261。Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O.(2006)。土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。全球生物地球化学周期,20(3)。https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S.木质植物侵占:原因和后果。在D. D. Briske中(编辑),牧场系统:过程,管理和挑战(pp。25–84)。Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Springer。Balesdent,J.,Girardin,C。和Mariotti,A。(1993)。在温带森林中与地点相关的13 c树叶和土壤有机物。生态学,74(6),1713–1721。Balesdent,J。和Mariotti,A。(1996)。使用13°C的自然丰度测量土壤有机化的周转。在I. T. W. Boutton和S. I. Yamasaki(编辑),土壤的质谱法(pp。83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。83–111)。Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J.(1986)。Koedoe,29(1),39-44。摘要克鲁格国家公园的前寒武纪花岗岩岩石。https://doi.org/10.4102/koedoe.v29i1.518 Bastin,J.-F.,Finegold,Y.,Garcia,C.,Mollicone,D.,Rezende,Rezende,M.,Routh,M.全球树的重新修复潜力。Science,365(6448),76-79。Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2015)。 使用LME4拟合线性混合效应模型。 统计软件杂志,67(1),1-48。 Biggs,R.,Biggs,H。C.,Dunne,T。T.,Govender,N。和Potgieter,A。L. F.(2003)。 在克鲁格国家公园(Kruger National Park)中的实验烧伤图试验:历史,实验设计和数据分析的建议。 Koedoe,46(1),1-15。 Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。 火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。 Geoderma,94(1),71–90。 Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。 木质侵占减少了养分限制并促进土壤碳螯合。 生态与进化,4(8),1423–1438。Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2015)。使用LME4拟合线性混合效应模型。统计软件杂志,67(1),1-48。Biggs,R.,Biggs,H。C.,Dunne,T。T.,Govender,N。和Potgieter,A。L. F.(2003)。在克鲁格国家公园(Kruger National Park)中的实验烧伤图试验:历史,实验设计和数据分析的建议。Koedoe,46(1),1-15。Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。 火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。 Geoderma,94(1),71–90。 Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。 木质侵占减少了养分限制并促进土壤碳螯合。 生态与进化,4(8),1423–1438。Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。Geoderma,94(1),71–90。Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。木质侵占减少了养分限制并促进土壤碳螯合。生态与进化,4(8),1423–1438。
摘要当前流动分解器(CFD)是一个已知的概念,已被证明可以有效地降低REBA 2 Cu 3 O 7(Rebco; re = Rare Earth)涂层导体(CC)的破坏性热点的可能性,通过提高正常区域的传播速度。但是,CFD概念的实现需要在制造过程中的其他步骤,该过程已经很复杂,并且一直在努力找到一种简单的卷轴到卷式制造方法。这项工作报告了使用固体蒸气银硫化技术的缓冲层CFD(BCFD)架构的制造途径的细节,以在高温超导体胶带中调整金属稳定剂的几何形状。在不同条件下处理的AG 2 S/AG/GDBCO三层型的微观结构和超导属性的分析显示了我们如何使用BCFD体系结构实现了新的定制功能CC。在DC限制实验中,由于NPZV的强大增强,这种BCFD-sulfide结构允许比常规体系结构(60 V s-1 vs. 1.2 V s-1)发电速度快得多。
©2023作者,根据美国老化协会的独家许可。保留所有狂欢。该文章的此版本已被接受,在同行评审后被接受,并受到Springer Nature AM使用条款的约束,但不是记录的版本,也不反映后接受后的改进或任何更正。记录版本可在线获得:http://dx.doi.org/10.1007/s11357-023-00780-y。
•与其他生态系统相比,湿地可以吸收和隔离数量的每单位面积碳,将大部分存储在沉积物中,而不是营养生物量中。估计表明,马萨诸塞州的湿地储存每英亩土壤有机碳是森林的六倍(EEA,2022年)。由于湿地长期保持缺氧条件,因此它们可以继续隔离碳数千年,从而产生厚厚的有机物层。相反,当湿地排干或降解土壤时,可能会发生快速的土壤碳丢失,并且在几十年内可以释放大量花费了几个世纪或千年的温室气体。虽然湿地沉积物中长期碳埋葬能力的估计值高度可变,但研究(McLeod等,2011)提出了以下速率:
摘要:背景:黑质(A9)多巴胺能(DA)神经元的退化导致帕金森病(PD)的主要运动症状。parkin 的功能丧失突变与一种罕见的早发性 PD 有关,这种疾病是隐性遗传的。目的:我们生成了有或没有 parkin 突变的同源人类 A9 DA 神经元,以确定 parkin 突变与人类 A9 DA 神经元功能障碍之间的因果关系。方法:利用 TALEN(转录激活因子样效应核酸酶)或 CRISPR/Cas9 介导的基因靶向技术,我们通过修复来自 PD 患者的 iPSC 中 parkin 的外显子 3 缺失以及将与 PD 相关的 A82E 突变引入来自健康受试者的 iPSC,产生了两对同源的幼稚诱导性多能干细胞 (iPSC)。四条同源 iPSC 系分化
合成的DNA/RNA链是出色的工程材料,用于开发纳米版和纳米机器,可以在传感中找到应用,1个药物输送,2个成像3和分子运输。4 Watson-Crick – Frank-Lin碱基配对的高可编程性,以及相互作用的可逆性以及将其用作多功能分子支架的可能性,使合成DNA特别适合设计精确的纳米级结构。2 B,5,6基于DNA的纳米器件通常是通过理性设计的 - 可识别特定分子输入(例如核酸,7个小分子8或蛋白质)的特定分子输入的核酸域而开发的。9通过多种外源刺激(包括温度10
1. 简介 出血性败血症 (HS) 是经济上最重要的细菌性疾病之一,主要发生在牛和水牛身上。该病是由属于巴斯德氏菌科的革兰氏阴性球杆菌多杀性巴氏杆菌亚种引起的 [1,2]。在印度和非洲,血清型 B:2 和 E:2 分别导致大型反刍动物患上 HS [3],尽管血清型 A:1 和 A:3 也与此有关。感染 HS 的水牛会出现呼吸音、大量流涎、呼吸困难、粘液鼻涕、高烧、食欲不振、烦躁不安、下颌和颈部水肿和发红 [4]。根据第 19 次牲畜普查(2012 年),印度的牛群总数为 2.999 亿头 (http://dahd.nic.in/sites/default/filess/Livestock%20%205_0.pdf)。其中,相当一部分(约 36%,1.087 亿头)是水牛,这使印度成为世界上水牛数量最多的国家。其中近一半(5105 万头)是奶牛,占牛奶总产量的 50% 左右。印度是最大的水牛奶生产国,占世界牛奶总产量的 68% [5]。根据中央邦政府畜牧业部的数据,该邦牛奶产量在全国排名第四(2014-2015 年为 1078 万吨),
高遗传负荷会对种群生存力产生负面影响,并增加对疾病和其他环境压力源的易感性。之前对南非两个非洲水牛 (Syncerus caffer) 种群进行的微卫星研究表明,由于有害等位基因的高频率出现,全基因组遗传负荷很大。本研究评估了这些等位基因在大部分水牛分布范围内的出现情况,它们对雄性身体状况和牛结核病抗性产生负面影响。利用来自 34 个地方(从南纬 25 度到北纬 5 度)1,676 头动物的现有微卫星数据(2-17 个微卫星位点),我们发现了与上述雄性特征相关的整个大陆的微卫星等位基因频率梯度。频率在从南到北的纬度范围内下降(每个位点的平均 Pearson r = -0.22)。频率变化与多位点杂合性变化相一致(调整后的 R 2 = 0.84),与东非相比,南部非洲的杂合性下降幅度高达 16%。此外,在五个连锁位点对上检测到了大陆范围的连锁不平衡 (LD),其特点是雄性有害性状相关等位基因之间存在较高的正位点间关联比例(0.66,95% CI:0.53,0.77)。我们的研究结果表明,早期观察到的性染色体减数分裂驱动系统驱动了大陆范围和基因组范围内的雄性有害等位基因选择,导致频率变化、搭便车效应导致的杂合性降低以及由于雄性有害等位基因在单倍型中同时出现而导致的广泛 LD。所涉及的选择压力必须很高,以防止等位基因频率谱系和单倍型因 LD 衰减而遭到破坏。由于大多数水牛种群是稳定的,这些结果表明,自然哺乳动物种群(取决于其遗传背景)可以承受较高的遗传负荷。