体现的碳 - 脱碳建筑物的新挑战对环境有重大影响,占所有提取物质消费的一半,而欧盟所有废物产量的三分之一。诸如混凝土和钢等关键建筑材料具有较大的碳足迹,这是由于其生产,运输和建筑中所涉及的过程。这些排放物被归类为具体的碳,占欧盟建筑库存总温室气体排放的很大一部分。在2020年,建筑物的总生命周期排放量占欧盟总温室气体排放量的40%以上,体现碳占与建筑物相关的排放的20%以上。通过切换到可再生能源并提高能源效率的能源领域的脱碳和建筑物的运行,体现的碳将在2040年到2040年的全寿命(或WLC)。
● 澳新银行 (ANZ) 已承诺的可持续融资金额最大,本世纪累计达 1500 亿美元,但其对现实世界成果的贡献在很大程度上不透明,总计 64% 的资金用于可持续发展相关和便利性融资等工具。问题在于,资本可能会被便利化或分配给没有可靠脱碳途径的公司,因此与转型不符。考虑到澳新银行的客户群、董事会组成及其持续的高化石燃料风险,同时又是四大银行中唯一一家没有实质性政策限制新石油和天然气融资的银行,这是一种风险。
另一方面,更新的EPBD(其修订于2021年开始并于2024年结束)为欧盟的建筑物气候政策提供了更明显的方向。新修订的文本整合了强制性的共同目标和特定的绩效要求,以更好地利用能源并减少现有结构和新结构的碳排放。有史以来第一次,EPBD引入了与“全球变暖潜力” 9对新结构的整个寿命的计算有关的新要求,这对与建筑材料相关的具体碳排放的核算开放。国家政策制定者现在被指控转移大量需求,并评估实现EPBD的能源和气候目标所需的野心水平。由于国家差异,就欧盟将过渡到“仅可持续建筑”的全球区域10,可能会有广泛的结果,因此,建筑部门的信号混合在一起。
为了限制能源消耗和高峰载荷,我们的社会电气化增加,需要更多有关建筑物中能源使用的信息。本文介绍了一个包含4年的数据集(2018年1月至2021年12月/3月2022)每小时测量位于挪威德拉姆的45座公共建筑物的能源和天气数据。建筑物是学校(16),幼儿园(20),疗养院(7)和办公室(2)。对于每个建筑物,数据集都包含有关建筑物的上下文数据,包括其底面积,建筑年,能源标签,有关其加热系统的信息和通风系统的信息,此外还包括能源使用和天气数据的时间序列数据。对于某些建筑物,能源测量仅包含小时进口电力的测量,而其他建筑物的时间序列数据则具有用于不同能源服务和技术的子计算机。研究人员,能源分析师,建筑所有者和政策制定者可以从数据集中受益。小时负载分解,能量负载的预测和灵活性,网格规划和建模活动。
我们介绍了当前和未来的预计天气文件的前所未有的数据集,用于在全球10个气候区域分发的15个主要城市建立模拟。数据集包括环境空气温度,相对湿度,大气压,直接和弥漫性太阳辐照度以及小时分辨率下的风速,这是进行建筑模拟所需的必不可少的气候元素。数据集包含Energy Plus天气文件(EPW)格式(EPW)格式的典型和极端天气年份,以及三个时期的逗号分隔价值(CSV)格式的多年预测:历史(2001- 2020年),未来的中期(2041-2060)(2041-2060),以及未来的长期(2081-2100)。数据集是从一个区域气候模型的预测中生成的,这些模型是使用每个城市的多年观察数据对其进行偏差校正的。所使用的方法使数据集成为第一个在极端温度的频率,持续时间和幅度中纳入未来气候中复杂变化的数据集。这些数据集在IEA EBC附件80“建筑物的弹性冷却”中创建,可以用于不同类型的建筑适应和弹性研究,以进行气候变化和热浪。
建筑物中的加热,通风和空调(HVAC)系统是全球运营CO 2排放的主要来源,这主要是由于它们的高能源需求。传统控制器在管理建筑能源使用方面显示出有效性。但是,他们要么难以处理复杂的环境,要么无法将经验中的学习纳入他们的决策过程,从而提高了计算要求。这些缺点的潜在解决方案是增强学习(RL),可以通过其多功能和基于学习的特征来克服它们。在这种情况下,本研究介绍了详尽的文献综述,重点是自2019年以来发表的研究,该研究将RL应用于HVAC系统控制。它桥接了理论概念和文献发现,以确定每个问题的合适算法并找到差距。发现,在实际建筑物中的RL部署有限(占研究的23%),常见的培训方法揭示了基本的技术问题,可以防止其安全使用:外在状态组件中缺乏多元化(例如,占用时间表,电价,电价和天气)在每种情节中在训练中在训练中以多样性或意外改变现实生活的方式收到的代理人在训练中接收。这需要重复的,广泛的再培训,然后在计算上很昂贵。未来的研究应专注于通过解决先前的问题将RL应用于真实建筑物。进一步的研究应探讨这个方向。META-RL作为概括功能的新兴解决方案而出现,因为它可以在各种任务上训练代理,从而使代理更适应性并降低了计算成本。
面对陪审团,由:Ginestet,Stéphane大学教授,Insa-Toulouse报告员Le-Pierre,Nolwenn大学教授,Savoie Mont Blanc Rapporteur Zondag大学教授,Herbert A.大学,Insa-Lyon论文主任Johannes,Kévyn讲师(HDR),大学论文联合主任Claude Bernard Lyon 1 Horgnies,Matthieu医生,HDR,HDR,HDR,研究工程师,研究工程师,Lafargeholcim Innovation Center /viv>/viv>/viv>/viv>>
摘要 共享可再生能源和减少传统能源消耗以改善全球变暖等环境问题已成为当前科学工程研究的主要关注点。此外,随着全球建筑领域对制冷和供暖需求的急剧增加,需要适当的技术来改善建筑物的热性能。如果选择得当,在建筑物中使用相变材料 (PCM) 作为热能存储策略可以满足潜在的热舒适性要求。本研究文章概述了建筑物中不同的 PCM 冷却应用。所审查的应用分为主动和被动系统。还介绍了所使用的 PCM 及其各自的特性。所研究系统的主要结果表明,它们能够有效减少寒冷季节的室内温度波动和能源需求,并能够触发负荷减少或转移。重点对建筑物中 PCM 冷却应用的最新进展回顾冷却 PCM 应用分为主动和被动系统PCM 是节能建筑的有前途的技术结合主动和被动系统可能是迈向 NZEB 的潜在一步关键词:PCM、潜热、冷却、热能存储、建筑。字数 = 7136 1. 简介世界人口和经济正在快速增长,导致世界能源需求和消耗大幅增加,从而在引发严重环境影响方面发挥巨大作用 [1]–[8]。根据欧盟统计局发布的数据,欧盟成员国的最终能源需求显着增加,2015 年达到约 10.84 亿吨油当量 (Mtoe),其中 4.22 亿吨油当量来自建筑相关行业,相当于总需求的 39% [9]。建筑行业是最大的能源消耗行业,占全球最终能源消耗的 33.33% 以上,并被视为同等重要的二氧化碳排放源 [10]。此外,研究发现,建筑物能耗的一半是由供暖、通风和空调 (HVAC) 系统引起的 [11];另一项研究表明,这一数字为 60% [12]。亚洲、拉丁美洲、印度和中国的制冷需求趋势显示,从 2010 年的 0.8 EJ 大幅增加到 2050 年的预计 5.8 EJ。而在中国,到 2040 年,制冷需求的预期增幅将达到与拉丁美洲和亚洲相当的水平 [13]。为此,研究人员和政策制定者正在推动新的政策
5.6我们建议您聘请在有能力的人计划中注册的安装人员。注册的安装人员可以自我认证他们的工作是否符合建筑标准,从而消除了对正式建筑法规申请的需求。他们将通知理事会的建筑控制服务,该工作已经完成,并将为您提供证明符合建筑法规的证书。
从 2019 年俄勒冈州能源法规(称为 2019 年俄勒冈州零能耗商业法规)开始,俄勒冈州能源部就与建筑规范部门合作,在法规文件中直接纳入了对 1.5% GET 要求的引用。这样做的目的是帮助建筑师、工程师和设计界的其他人员更多地了解 GET 要求,以便可以在公共项目设计的早期阶段纳入 GET。2024 年 1 月 1 日生效的 2024 年俄勒冈州能源效率专业法规继续引用 1.5% GET。俄勒冈州能源部感谢建筑规范部门的合作和努力,将此引用纳入能源法规,因为它有助于支持对要求的认识和遵守。以下是当前 2024 年俄勒冈州商业能源法规的摘录。