通过实施UISCEÉireann的BAP,已经实现了很多实现,我们的目标之一完成了,在其他六个目标中也完成了六项措施。所有其他行动都持续不断,主要是由于它们的不断或不断发展的性质以及对持续发展的需求。实施BAP导致了许多成功的案例研究,这些案例研究在整个进度报告中得到了说明。这些包括对草地的管理以增加生物多样性。这是在Iniscarra WTP上观察到的,现在支持多种昆虫,鸟类,哺乳动物和植物以及塔拉格特塔楼的水库,该水库被管理为大黄黄蜂,这是大黄蜂欧洲欧洲创新项目的一部分。在吉他湖中建立河岸林地是一种基于自然的解决方案,以解决湖中的水质问题。在保护和提高水质的过程中,该项目还促进了生物多样性增强和二氧化碳固存。在Bohernabreena水库中,确定了入侵物种日本针织物,并通过管理和控制该物种于2019年开始的治疗计划。该计划导致在水库中呈现日本的牛皮降低了96.5%。
所有生物都需要免疫系统来识别、区分和防御病原体。从进化的角度来看,免疫系统是在快速进化的病原体施加的强大选择压力下进化的。然而,免疫系统的功能多样性意味着不同的免疫成分及其相关基因可能在不同形式的选择下进化。昆虫传粉者提供基本的生态系统服务,是一个重要的系统,可以借此了解选择如何影响免疫基因的进化,因为它们的数量正在减少,而病原体被强调为一个潜在的促成因素。为了加深我们对重要传粉者免疫基因中遗传变异的理解,我们对野生捕获的 Bombus terrestris 雄性进行了全基因组重测序。我们首先评估了典型免疫基因的核苷酸多样性和扩展单倍型纯合性,发现正向选择作用于参与病原体识别和抗病毒防御的基因的最强信号,这可能是由野生种群中病原体传播的增加所驱动的。我们还发现了在强烈净化选择下进化的免疫基因,突出了对大黄蜂免疫系统的潜在限制。最后,我们强调了野生单倍体雄性的免疫基因中可能存在的功能丧失等位基因,这表明这些基因对于发育和生存可能不那么重要,并且代表了大黄蜂免疫系统基因库中的冗余。总的来说,我们的分析为关键传粉者免疫系统的近期进化史提供了新的见解,突出了选择目标、适应限制和潜在的冗余。
效率,测量的代谢能量比空气动力学模型更能准确地表明飞行的行为和生态成本。因为在某些鸟类 1 中也发现了类似的平坦功率-速度曲线(尽管在蝙蝠中没有),所以建议避免不谨慎地使用飞行成本的理论估计值:假设效率与速度和尺寸无关的恒定方法'目前无法证明其合理性。将生理和空气动力学方法与能量学相协调,特别是对效率的更深入理解,仍然是动物飞行研究者面临的主要挑战。最后,为什么大黄蜂的翅膀这么小?答案一定在于蜜蜂的飞行生态学,也就是它利用飞行采集花蜜和花粉的方式。这可能导致它携带大负荷,而小翅膀并不特别适合这样做'·10 • 蜂鸟。 (还有一些蝙蝠种类)也以花蜜为食,经常在寄主植物上盘旋,并且
Wooly Pig Company的一部分是未来的森林公司,正在积极试图对Brodoclea的Agro-Forestry Enterprise之间的关系进行更多的研究,涉及我们的Mangaltiza Pigs,生物多样性和树木的生长。迄今为止,我们已经对该地点的一部分进行了繁殖鸟调查,该调查研究了猪与繁殖鸟类多样性之间的可能相关性。这项工作本质上是非常探索性的,并且提供了鸟类多样性与猪之间可能存在关系的迹象。但是,需要更多的研究来检查猪是否确实会增加鸟类的多样性,因为它们在未来几年中的活动。在2024年,我们开始在Brodoclea进行蝴蝶和大黄蜂样带,以查看结果是否也表明猪对这些群体有影响。再次,这是早日,我们今年夏天的潮湿天气无疑对昆虫种群产生了影响,因此很难评估仅一年的结果。但是,这项工作是长期的,因此我们希望我们也可以看到这些兴趣之间的某些相关性。
0106.3200 --鹦鹉形目(包括鹦鹉、长尾小鹦鹉、金刚鹦鹉和凤头鹦鹉) 6 Y0 0106.3300 --鸵鸟;鸸鹋(Dromaius novaehollandiae) 6 Y0 0106.3900 --其他 6 Y0 - 昆虫: 0106.41 --蜜蜂: 0106.4110 --- 用于害虫防治的蜜蜂 Apis mellifera 6 Y0 0106.4120 --- 大黄蜂 Bombus terrestris 6 Y0 0106.4190 --- 其他 6 Y0 0106.4900 -- 其他 6 Y0 0106.90 -- 其他: 0106.9010 -- 智利蛙(Calyptocephalella gayi 或 Caudiverbera caudiverbera) 6 Y0 0106.9020 -- 鸡蜘蛛(Mygalomorphae,Araneae 亚目) 6 Y0 0106.9090 -- 其他 6 Y0 02.01新鲜或冷藏的牛肉。0201.1000 -胴体和半胴体 6 Y0 0201.2000 -其他带骨切块 6 Y0 0201.3000 -无骨: 6 Y0 02.02 冷冻牛肉。0202.1000 -胴体和半胴体 6 Y0 0202.2000 -其他带骨切块 6 Y0 0202.3000 -无骨: 6 Y0 02.03 新鲜、冷藏或冷冻猪肉。- 新鲜或冷藏: 0203.1100 --胴体和半胴体 6 Y0 0203.1200 --带骨火腿、肩肉及其切块 6 Y0 0203.1900 --其他 6 Y0 - 冷冻: 0203.2100 --胴体和半胴体 6 Y0 0203.2200 --带骨火腿、肩肉及其切块 6 Y0 0203.29 --其他 0203.2910 ---带有肉层的脂肪 6 Y0 0203.2920 ---夹有高比例脂肪的五花肉 6 Y0 0203.2930 ---无骨 6 Y0 0203.2990 ---其他 6 Y0 02.04 新鲜、冷藏或冷冻的绵羊或山羊肉 0204.1000 -新鲜或冷藏的胴体和半胴体羔羊 6 Y0 - 其他新鲜或冷藏的绵羊肉: 0204.2100 --胴体和半胴体 6 Y0 0204.2200 --其他带骨切块 6 Y0 0204.2300 --无骨 6 Y0 0204.3000 -冷冻的胴体和半胴体羔羊 6 Y0 - 其他冷冻的绵羊肉: 0204.4100 --胴体和半胴体 6 Y0 0204.42 --其他带骨切块: 0204.4210 ---肩肉 6 Y0 0204.4220 ---腿 6 Y0 0204.4230 ---鞍 6 Y0 0204.4290 ---其他 6 Y0 0204.4300 --无骨 6 Y0 0204.5000 -山羊肉 6 Y0 0205.0000 马、驴、骡或驴骡的肉,新鲜、冷藏或冷冻。6 Y0
0106.3200 --鹦鹉形目(包括鹦鹉、长尾小鹦鹉、金刚鹦鹉和凤头鹦鹉) 6 Y0 0106.3300 --鸵鸟;鸸鹋(Dromaius novaehollandiae) 6 Y0 0106.3900 --其他 6 Y0 - 昆虫: 0106.41 --蜜蜂: 0106.4110 --- 用于害虫防治的蜜蜂 Apis mellifera 6 Y0 0106.4120 --- 大黄蜂 Bombus terrestris 6 Y0 0106.4190 --- 其他 6 Y0 0106.4900 -- 其他 6 Y0 0106.90 -- 其他: 0106.9010 -- 智利蛙(Calyptocephalella gayi 或 Caudiverbera caudiverbera) 6 Y0 0106.9020 -- 鸡蜘蛛(Mygalomorphae,Araneae 亚目) 6 Y0 0106.9090 -- 其他 6 Y0 02.01鲜或冷藏牛肉。 0201.1000 -胴体及半胴体 6 Y0 0201.2000 -其他带骨切块 6 Y0 0201.3000 -去骨: 6 Y0 02.02 冻牛肉。 0202.1000 -胴体及半胴体 6 Y0 0202.2000 -其他带骨切块 6 Y0 0202.3000 -去骨: 6 Y0 02.03 鲜、冷藏或冷冻猪肉。 - 新鲜或冷藏: 0203.1100 --胴体和半胴体 6 Y0 0203.1200 --带骨火腿、肩肉及其切块 6 Y0 0203.1900 --其他 6 Y0 - 冷冻: 0203.2100 --胴体和半胴体 6 Y0 0203.2200 --带骨火腿、肩肉及其切块 6 Y0 0203.29 --其他 0203.2910 ---带肉层的脂肪 6 Y0 0203.2920 ---夹有高比例脂肪的五花肉 6 Y0 0203.2930 ---无骨 6 Y0 0203.2990 ---其他 6 Y0 02.04 羊肉或山羊,新鲜、冷藏或冷冻 0204.1000 - 鲜或冷藏的羔羊胴体及半胴体 6 Y0 - Th
当前的农药使用水平对环境对人类健康的潜在影响产生了深远的影响。政策评估倾向于将重点放在生态系统的污染和农药使用的经济影响上。至关重要的是,越来越多的证据表明,在欧洲农业中使用有害农药对非目标生物和生物多样性产生了重大影响:最近为PES Ticides外部性的文献越来越多的文献提供了关键证据的文章包括Nicholson等人。(2023),他表明欧洲的大黄蜂种群暴露于有害水平的农药和Rigal等人。(2023),他表明农业强化阳离子和农药的使用导致欧洲的鸟类种群下降。,Beaumelle等人。(2023)表明,农药总体上有助于降低土壤动物区系的多样性和多样性。食品系统上的多方面应力源会产生级联效应,并可能对粮食安全产生严重后果(Tscharntke等,2012)。农药对功能性生物多样性的不利影响,这对于各种生产与生产的生态系统服务至关重要(例如授粉,害虫控制,营养循环)。这种作用不仅限于致命剂量,而且还来自亚致死浓度的连续暴露(Tosi等,2022)。例如,由于许多土壤功能是生物学介导的(Chagnon等,2015),因此对土壤生物的不利影响可能会导致较低的潜力,例如似乎有不匹配养分的摄取(例如,Edlinger等,2022),这又在具有较高肥料应用的形式的潜在外部性的情况下为人为外部提供了人为。这些最新发现有助于进一步的证据,表明目前目前无法保护非目标或Ganism和生态系统的欧盟监管系统(Schneider等,2023)。然而,欧盟可持续使用农药的最新提议面临着相当大的政治推动力(Candel等,2023),尤其是由于对粮食生产和经济影响的担忧(Schneider等,2023年)。因此,该提案在2023年12月被欧洲议会拒绝,并于2024年2月被欧元pean委员会撤回。
bumblebees(bombus spp。)在欧洲,美国和亚洲广泛分布,温带地区最为显着的多样性。尽管它们主要与凉爽的气候相关,但某些物种适用于较温暖的地区,例如地中海地区,亚洲低地热带地区以及中部和南美洲的部分地区(Williams等,2008; Goulson,2009)。However, their species richness is the lowest in neotropical regions, including Brazil, which hosts only eight species: Bombus bahiensis Santos Ju ́ nior et al., 2015 , Bombus bellicosus Smith, 1879, Bombus brasiliensis Lepeletier, 1836, Bombus brevivillus Franklin, 1913, Bombus morio (Swederus, 1787), Bombus Pauloensis Friese,1913年,Bombus Rubriventris Lepeletier,1836年和Bombus Transsersalis(Olivier,1789年)。这些物种都不分布在整个巴西领土上,其人口仅限于特定的栖息地(Moure and Melo,2023; Moure and Sakagami,1962)。虽然B. brevivillus和B. Morio完全是黑色的,但其他物种在人体的某些区域具有黄色绒毛(Santosjúnior等,2015)。尽管物种很少,但与温带气候的物种相比,热带大黄蜂的生物学研究不足。这种知识差距部分是由于很难定位其菌落或在实验室环境中保持长时间(GaróFalo,2005; Oliveira等,2015)。此外,这些热带大黄蜂比温带气候中的大黄蜂更具侵略性,对研究工作构成了挑战(Laroca,1972,1976;GaróFalo,2005; Oliveira et al。,2015)。值得注意的是,据报道,除了刺痛之外,布雷维维鲁斯(B. brevivillus)也可能从事一种防御行为,吐出一种不认识的物质,它阻止了入侵者,也阻碍了人们对这些大身蜜蜂的感情(Oliveira等人,2015年)。巢穴建在现有的地下空腔中或地面上,有或没有大黄蜂切割的垃圾或植被的保护层,这种变化发生在物种之间和内部(Laroca,1972,1976; Olesen,1989; 1989; Taylor and Cameron; Taylor and Cameron,2003; Oliveira,2003; Oliveira et e e; Oliveira等,2015,2015年)。热带地区的大黄蜂菌落通常遵循与温带物种相似的年生殖周期(Laroca,1976; Oliveira等,2015; Paula and Melo,2015)。然而,在有利的气候条件下,殖民地产生的新gynes可能不会进入抑郁,而是开始新的殖民地(GaróFalo,1979年)。此外,
Nature in Singapore 17 : E 2024056 Date of Publication: 28 June 2024 DOI: 10.26107/NIFAH-IS-2024-0056 © National University of Singapore Biodiversity Record: Fish fauna of a mangrove tide pool at Sungei buloh ong Junxiang Lummin * & Tay Jing Xun Email: Lumminongjx@gmail.com ( * Corresponding Author)推荐引用。Ong JXL和Tay JX(2024)生物多样性记录:Sungei Buloh的红树林潮汐池的鱼类动物区系。新加坡的自然,17:e2024056。doi:10.26107/nis-2024-0056主题:红树林烟熏鱼,carce carce(Teleostei:syngnathforms:syngnatherathidae); Acentrogobius sp。(Teleostei:Gobiiforms:Gobidae); Stripe-Face Brackish Goby,Eugnathogobius Variegatus(Teleostei:Gobiiphists:Gobiidae); Roux的Pandaka,Pandaka Rouxi(Teleostei:Gobiiforms:Gobiidae); Glass Goby,Gobiopterus sp。(Teleostei:Gobiiforms:Gobidae); Bandeed Mullet Goby,Hemigobius Hoenostei(Teleostei:Gobiiforms:Gobiidae); Yellowspot肥胖的Goby,Pseudogobius Fulvicaudus(Teleostei:Gobiiphtors:Gobiidae);斑点脂肪鼻子,pseudogobius poiclosoma(teleoste:gobiiedae);单杆脂肪鼻子戈比,pseudogobius垂直(teleostei:gobiiphtors:gobiidae); Mangrove Bumblebe Goby,Brachygobius Kabiliensis(Teleostei:Gobiiforms:Gobiidae); Gant Mudskipper,periphthalmodon Schlosseri(Teleostei:Gobiiforms:Gobiidae); Boddart的蓝色泥泞的泥泞的杂物(Teleostei:Gobiiferae)。标识的主题:Jiayuan Lin,Ong Junxiang Lummin和Tay Jing Xun。地点,日期和时间:新加坡岛,鞋剑湿地湿地保护区; 2024年3月6日; 1301–1316小时。栖息地:红树林。7)。6)是国家。在潮汐期间,在裸露的潮汐水和泥浆底物的一个孤立的潮汐池(约45厘米)中,在潮间的潮间扁平平坦中。此位置与早期记录中的特色不同(ONG,2024)。观察者:Ong Junxiang Lumin和Tay Jing Xuan。观察:在池中,四个人的小子Carce(图。1-4)与至少九种哥布斯一起观察到。每个人都有20多个人的Brachygobius Kabiliensis(图。1,4,5&8)和pseudogobius poicilosoma(图大约有11个人的垂直垂直行动(图。1、6、7、8)和两个假福库夫(图有一个明显的Acentrogobius,我们无法识别物种(图10),七个Eugnathogobius Variegatus(图9)和三个Hemigobius Hoevenii(图4)。超过10个pandaka rouxi(图。1&5)和Gobiopterus sp。(图5)在水面附近观察到。在六个Boleophthalmus boddarti附近(图12),包括少年(图11)和一个周围的骨膜schlosseri(图13)在池的3 m内观察到。备注:这种观察是对鱼类潮汐池中可以观察到的鱼类群落的先前报告的补充(ONG,2024)。存在大型泥泞的木币,例如骨膜骨膜造成的schlosseri和Boleophthalmus boddarti,这表明池可能是由于它们的挖掘和挖掘活动而形成的。也值得注意的是3厘米红色泥浆的罕见说明(图当潮汐退去时,这些池倾向于将小的非障碍鱼限制在泥滩上。在鱼类中值得注意的是红树林鱼鱼果carce,这似乎很少被注意到。Lim&Low(1998)中说明了Sungei Buloh的10.3 cm个人的侧视图。尽管它们相对普遍,但三种过同类的脂肪糖果酒以前以伪造爪哇果(Pseudogobius Javanicus)的名义感到困惑(参见Larson&Lim,2005年) - Pseudogobius Fulvicaudus,Pseudogobius verticalis和Pseudogobius Poicilosoma,可以通过其第一个Dorsal dorsal dorsal dorsal dorsal dorsal dorsal dorsal dorsal fins来识别。pseudogobius poicilosoma是pseudogobius javanicus的年龄较大(并且因此有效)。Pseudogobius Verticalis(Larson&Hammer,2021年)。11)作者认为是少年bolephthalmus boddarti。