产品规格 机械存储容量 400 in 3 、900 in 3 最大设计压力 (MDP) 5,000 psig 防爆系数 防爆:1.25x MDP,防爆:2x MDP 空重 9.1 lbm (400 in 3 )、15.4 lbm (900 in 3 ) 衬里材料 Inconel 718(可提供铝、耐腐蚀钢 (CRES)) 安装选项 多种。请咨询。注意:这些规格可以根据客户要求进行修改。请联系 Sierra Space 了解设计选项,以满足特定客户需求。
可靠且准确的同步交付对于满足多个市场领域的严格任务应用程序(例如国防,移动回程,电力公用事业和广播)的严格要求至关重要。网络运营商需要一个可靠的可扩展解决方案,以提供确保的阶段,频率和时间同步。但是,以具有成本效益的方式实现这一目标提出了重大挑战。我们的OSA 5422是一种多功能且精确的同步设备,旨在满足新兴应用程序等新兴应用程序的严格频率和相位同步需求,同时还支持其他市场需求,例如IRIG,BITS,COMPESITER,CC/JCC(CC/JCC),以及诸如Tri-Level和Black Burst的广播信号。其紧凑而灵活的设计(用于在网络边缘部署中进行了优化,可确保可靠且具有成本效益的同步很容易实现。OSA 5422,配备了
在过去的几十年中,通过Balloon计划成熟的NASA空间任务的例子。在1980年代后期和90年代的宇宙微波背景(CMB)气球浮游在设计Wilkinson Microwave各向异性探针(WMAP)以及Planck Spacecraft核心的焦平面仪器中的关键地面工作。在气球传播的仪器上开发并证明了Reuven Ramaty高能太阳能光谱成像仪(Rhessi)任务的锗探测器(Rhessi)任务。镉 - 锌 - 泰耐酸(CZT)检测器阵列的三个气球阵列产生了设计的数据,以设计Swift Burst Alert Alert Telescope仪器,并且气球支持Fermi大面积大面积Gamma-Ray望远镜的完整工程原型,该望远镜发射了2008年。
EMC(EMI)EN61326+A1行业排放外壳:CISPR 11组1级A:CISRP16-1/-2排放AC主流:CISPR 11组1级A:CISRP16-1/-2/-2(EMS)EN1 661326+A1行业免疫ESD:EN611000-eN611000-4-KV(级别) RF-interference: EN61000-4-3: 10 V/m (amplitude-modulated, 80 MHz to 1 GHz) (level 3) Immunity Fast Transient Noise: EN61000-4-4: 2 kV (power line) (level 3) Immunity Burst Noise: 1 kV line to line (I/O signal line) Immunity Surge: EN61000-4-5: 1 kV line to line 2 kV line to ground (power line)免疫进行干扰EN61000-4-6:3 V(0.15至80 MHz)(2级)免疫电压倾斜/中断EN61000-4-11:0.5循环,0,180°,100%(额定电压)
Elena Cotsiliti, Valentine Lion, Svenge Schuehle, Olivier Govaere, And Li, Monique J. Wolf, Helena Horvatic, Skrevant Gupta, Tracy Gupta, Tracy O'Connor, Anastasios D. Giannou, Ahmad Mustafa Shiri, Schlesinger, Maria Beccaria, Charlotte Rennert, Dominic Pfister, Angry, Iana Gadjalo,Neda。 Jakob Janzen,Singh Indrabhadur,Chaofan粉丝,Xinyuan Liu,Monika Rau,Martin Feuchenberg,Eva Schwaneck,Sebastian J. Wallace。 Burst,Mihael Vicur,Mihael Vicur,Hellmut G. Augustin。阿卜杜拉(Abdullah),德克·哈勒(Dirk Haller),弗兰克·塔克(Frank Tacke),昆汀·安斯特(Quentin M.
•可互操作的卫星数量大量•全局覆盖范围•实时检测和位置•单次突发检测和位置•近实时检测•新功能(例如galileo rls)
本研究介绍了一种新型的超大规模集成 (VLSI) 系统中的错误检测和纠正方法,专门针对太空应用。本研究的核心是开发和实施一种复杂的二维纠错码,旨在显著提高外层空间恶劣条件下的内存可靠性。传统的纠错方法虽然在一定程度上有效,但无法解决突发错误这种复杂的现象——由于单一破坏性事件(如宇宙辐射)而同时在多个位中发生的错误。所提出的纠错方案创新地采用了扩展的 XOR 运算,覆盖了更大的数据块,从而为检测和纠正突发错误提供了更全面的解决方案。此外,循环冗余校验 (CRC) 技术的集成进一步增强了系统的错误检测和纠正能力。通过与现有方法的详细比较,我们的研究表明,所提出的二维代码不仅解决了当前纠错技术的局限性,而且还有助于提高太空工程中内存系统的可靠性。该方法的实施有望在突发错误普遍存在的环境中提供更好的性能,标志着空间系统设计和可靠性领域向前迈出的重要一步。
注释:1. 由于我们持续进行产品改进计划,规格如有变更,恕不另行通知。2. 所有规格均基于各自优化的重复率。3. 预热时间后,冷却器温度 = 23 ±0.1°C。4. 最大传输率下,可变衰减器和过程快门的最大功率。5. 1 MHz 操作下的 UV 自相关。6. 8 小时以上,±1 °C 环境温度。7. 单脉冲操作(突发数 = 1)。8. 稳定状态(无脉冲门控或脉冲重复率变化)。9. (脉冲重复率)x(突发数)不能超过 5 MHz。10. 表示基于 1.000 kHz 下指定的 50 μJ 单脉冲能量的最小重复率下的典型值。
