基本描述 Ad Astra 能源与环境服务公司成立于 2007 年,致力于探索绿色氢能和燃料电池在电动汽车中的应用。该公司以母公司 Ad Astra 火箭公司在类似太空应用技术方面的专业知识为基础。Ad Astra 的首个示范项目“哥斯达黎加氢能运输生态系统”于 2018 年在瓜卡纳斯特省开始运营。绿色氢能由其自有太阳能发电场(78 kW)和风力涡轮机(5 kW)以及 5.9 kW 质子交换膜 (PEM) 电解器产生的电力生产。这种绿色氢能随后被用于哥斯达黎加第一辆氢能运输车辆“Nyuti”公交车。Nyuti 公交车使用容量为 38 公斤 (kg) 压缩氢气的氢气罐,可运送 35 名乘客,续航里程为 338 公里 (km),限速为 110 公里/小时。自 2019 年以来,绿色氢能项目一直为在瓜纳卡斯特旅游区运营的四辆丰田 Mirai 车队提供动力。哥斯达黎加氢能运输生态系统项目在过去 10 年内开发完成,总投资额为 880 万美元(其中 Ad Astra 投资 49%,哥斯达黎加政府投资 35%,非政府组织投资 9%,其他投资和赞助投资 7%),包括 2019 年更换循环末期电解器和 H70(70 兆帕)氢气分配器。这是一个小规模试点项目,旨在测试该技术并在实践中学习。从该项目中学到的知识对于了解如何在热带气候下运营绿色氢能基础设施以及如何降低高温相关风险至关重要。
致谢:作者和编辑要感谢Shakti可持续能源基金会对Sgarchitect(SGA)进行调试。作者还想通过美国国际发展局(USAID)对美国人民的慷慨支持表示感谢,以调查能源,环境和水理事会,这是清洁空气和更好的健康(CABH)项目的一部分。更清洁的空气和更好的健康(CABH)是美国国际发展机构(USAID)支持的五年(2021年至2026年)。它旨在通过建立基于证据的模型来改善空气质量管理,以加强缓解空气污染并减少印度空气污染的暴露。该项目是由能源,环境和水理事会领导的一个财团实施的,包括ASAR社会影响顾问,环境设计解决方案,Enviro Legal Defance Firm和重要战略。
从化石燃料的公共汽车过渡到电池电动巴士(E-Buses)公共交通工具对公共汽车运营商提出了重大挑战。Transjakarta是印度尼西亚最大的公交运输系统,计划到2030运输系统中电子总线的能源消耗和运营范围各不相同,因为驱动动态,地形和操作需求是每条路线所独有的。能源消耗和运营需求会影响成本,这对于运输运营商特别关注。这项研究为12 m的公交车提供的途径提供了详细的能耗,范围和成本分析,该路线计划在Transjakarta BRT系统中用于电气。它提供了建议,首先是通过电力进行电力的路线,并探讨可以修改哪些成本因素,以增加每公里的成本的E-BUSS的竞争力。为了准确对每条路线的总拥有成本(TCO)进行建模,我们使用专有路线开发工具,计算模拟工具和路线级别范围分析。
该研究根据所应用的存储技术和芬兰背景下的电气化程度研究了电动城市公交车的环境影响。磷酸锂(LFP)和电化学再生器(ECR)被选为储存技术。ECR可以是锂离子电池的替代品;但是,在应用于电气化城市公交车时,其环境表现知之甚少。这项研究的重点是柴油巴士,电池电动总线(BEB)和插电式混合动力总线。生命周期评估(LCA)用于评估存储技术与电力程度之间的潜在环境影响。来自该行业的主要数据用于评估制造ECR的影响。结果表明,生产ECR的KWH产生了178 kg CO 2 -EQ的全球变暖潜力(GWP),高于LFP。但是,其应用表明ECR的性能更好。在BEB中使用ECR和LFP的影响分别为385 g CO 2 -EQ/KM和441 G CO 2 -EQ/KM。混合系统分别为ECR和LFP生成652 g CO 2 -EQ/km和670 g CO 2 -EQ/km。这项研究还表明,电气化程度和环境益处之间没有一致的模式。方案分析表明,使用芬兰和挪威电力组合评估时,BEB提供了最佳的GWP,而在施加波兰电力时,混合系统表现最好。这项研究表明,存储技术,电气化程度,燃料固定和电源会影响环境性能。在决定使城市的运输系统电气化之前,需要仔细评估。
运输系统正在过渡,以应对当前基于私人汽车的移动性范式引起的挑战(Banister,2005; Fournier等,2020; Geels等,2017)。这些挑战包括解决气候目标,减少拥堵,空气污染和增加的可及性(Pribyl等,2020; Kuss和Nicholas,2022)。为了应对这些挑战,几种趋势已经在景观水平的运输系统中表现出来,例如电气化,自动化,低碳过渡,共享运输和联运运输(Fagnant and Kockelman,2015; Geels,2012; 2012; Hirschorn et al。,2019)。创新的替代行动模式和系统正在以利基水平出现,例如移动性(MAAS),汽车共享系统和自动驾驶汽车
在过渡到零排放总线时,对于操作员来说,为特定路线特征选择正确的技术很重要,以确保公交车的核心目的 - 安全地移动乘客,按时完成 - 无需妥协即可完成。简介公交行业正在脱碳重型车辆,欧洲一直是实施零排放巴士的领导者。在过去的20年中,进行了零排放总线,电池电动总线(BEB)和燃料电池电动总线(FCEB)进行的试验。多亏了这些试验和示威,零排放巴士的引入正成为欧洲城镇运输网络越来越频繁且重要的部分。现在,零排放总线被证明是实现净零目标的关键贡献者,许多城市是
JIVE计划是在2010年代中期构思的,以先前的创新项目为基础,并寻求使用联合采购来实现该行业所需的对燃料电池巴士的需求规模,以便下一步迈向商业部署。当时,零排放巴士并未被广泛使用,但是该技术取代传统化石燃料供电的车辆的潜力已得到认可,许多城市和地区正在制定计划以逐步购买柴油巴士。氢燃料电池巴士的技术性能已被证明,例如在别致的项目中,在该项目中,在多年的多年中,在常规票价乘客服务中经营的公交车队在多个城市中经营。但是,燃料电池巴士的系列生产尚未开始,量很低,成本很高。此外,很少有供应商提供燃料电池巴士,从而导致型号有限。尽管在这个时候,电池电动巴士开始以更多的数量上市,但零排放巴士占公共交通巴士车队的一小部分,而技术的运营经验相对有限,从而导致高度的不确定性在整个巴士寿命中的现实世界绩效。
a。从实际操作的GPS数据和计划中的公交路线的数据中获得的旅行数量。SPTRAN提供的信息(来自General Transit Feed规范,GTFS2的数据)。