物品编号 参考编号 DNI/DNP 数量 制造商 零件编号 制造商值 1 C1、C2 - 2 TMK107B710MURATA;TA 1UF 2 C3 - 1 C1608X5R1H TDK 0.47UF 3 C4 - 1 C1206C105K5KEMET;MUR 1UF 4 C7 - 1 EEU-EB1H33 PANASONIC 330UF 5 D1 - 1 SM6T36CA ST MICROELE36V 6 D2 - 1 STPS1L60A ST MICROELESTPS1L60A 7 D3 - 1 B160-13-F DIODES INCOB160-13-F 8 J1 - 1 61729-0010BFCI CONNECT61729-0010B 9 J2,J3 - 2 1729018 菲尼克斯公司 1729018 10 JU1 - 1 PBC04DAAN SULLINS ELECPBC04DAAN 11 JU3-JU5,JU8- 6 22-28-4023 MOLEX 22-28-4023 12 JU6,JU12,JU- 4 22-28-4033 MOLEX 22-28-4033 13 LED1 - 1 APT3216SGCKINGBRIGHT APT3216SGC 14 R1 - 1 CRCW08051KVISHAY DALE1K 15 R2 - 1 CRCW080510VISHAY;ROH 10K 16 R6 - 1 CRCW080540VISHAY DALE40.2K 17 R7 - 1 CRCW080512VISHAY DALE12.1K 18 R8 - 1 CRCW08056KVISHAY DALE6.2K 19 R9,R11 - 2 CRCW08052MVISHAY DALE2.2M 20 R13,R14,R1 - 3 CRCW080510VISHAY DALE100K 21 R15 - 1 CR0805-10WVENKEL LTD. 4.7K 22 R16 - 1 3296W-1-503BOURNS 50K 23 SU1、SU3-SU- 11 S1100-B;SX1 KYCON;KYCO SX1100-B 24 TP1 - 1 5002 梯形校正 不适用 25 TP2、TP4、TP5- 4 5001 梯形校正 不适用 26 TP3、TP6、TP8- 3 5000 梯形校正 不适用 27 TP9 - 1 5119 梯形校正 不适用 28 TP10 - 1 5116 梯形校正 不适用 29 TP11 - 1 5118 梯形校正 不适用 30 U1 - 1 MAX17523AAANALOG DEVMAX17523AA 31 PCB - 1 MAX17523A MAXIM PCB 32 C8 DNP 0 EEU-EB1H33 PANASONIC 330UF 33 R10,R12 DNP 0 CRCW08051KVISHAY DALE1.47K 总计 59
摘要目的:为了同时确定散装和药物剂型的达帕格列嗪和Linagliptin,创建并随后验证了一种更容易,更实惠的RP-HPLC方法。方法:使用柱热科学同步C8,5μm粒径,昏暗。(mm)250x4.6 i.D标准化色谱条件。使用波长为230 nm的紫外检测器检测分析物。磷酸盐缓冲液和乙腈在30:70 v/v比的流动阶段使用。结果:Dapagliflozin和Linagliptin的保留时间分别为3.3和2.3分钟。dapagliflozin校准曲线在5–25μg/ml的浓度范围内显示线性相关系数为0.999,而Linagliptin的浓度范围为2-10μg/mL。已经确定,这种方法是快速,健壮,线性,灵敏,准确,精确和特定的。将各种降解应力条件应用于Dapagliflozin和Linagliptin。结论:随着保留时间的明显不同,两种API(活性药物成分)与纯标准药物(Dapagliflozin和Linagliptin)明显区分开。当前的药物方法已经开发并成功地用于确定合并配方和常规质量控制分析中的达帕列酰辛和利格列汀的水平,具有良好的准确性和敏感性。该方法已根据ICH指南对统计验证。关键字:Dapagliflozin,Linagliptin,反相HPLC,验证,强制降解研究,色谱条件。收到:12/09/2024接受:09/10/2024
脊髓及其复合组织是脊柱复杂动态机械系统中的敏感元件。在正常的习惯性运动中,脊髓需要通过椎管内运动和结构变形来适应脊椎姿势的变化。Breig 的观察(1960、1972)表明,从中脑到脊髓背部的脊髓圆锥,椎管长度平均变化 45 至 75 毫米。脊柱伸展的特点是松弛的脊髓组织呈波浪状折叠,随着脊柱进入屈曲状态,脊髓组织伸直,轴向张力增加。Smith(1956)观察了私人脊柱的屈曲运动,发现脊髓在椎管内向 C4 水平的零相对移位点移动;最大运动为中胸椎水平的 5.9 毫米。脊髓组织的应变各不相同,每个节段的拉伸与其腹侧椎间关节的运动成比例。脊髓中的拉力归因于指向尾部的神经根束缚,而不是施加在尾端的终丝张力的整体影响。Reid(I 960)通过尸检证实了这一发现。在 C5 水平显示出很小的相对运动,在 C8 至 T3 根水平增加到 18 毫米以进行全范围伸展。注意到下颈段脊髓的平均拉伸率为 10%(最大为 17.6%),而且脊髓与硬脊膜之间的相对运动非常小。神经根对硬脊膜的牵引力被认为是通过硬脊膜鞘和齿状韧带而不是小根结构传递到脊髓的。
A6 D1 D2 D6 E2 E4 E9 J1 J6 K9 P4 S8 T1 T6 T7 T8 T9 U1 U5 U9 V8 V9 X3 X4 X5 X6 Z1 Z2 Z3 1B 1E 1H 1Q 1R 1S 1T 1X 1Y 1Z 2B 2J 2K 2L 2U 2V 3C 3R 3Y 4P 4Q 4U 5C 5F 5G 5J 5L 5M 5N 5W 6D 6M 6P 6Q 6T 6Z 7G 7J 7Q 7Y 8J 8K 8L 8R ASI/ SI 定义 A1 区域支持单元 (RSE)(待批准)( ) A2 OH-58A/C 侦察机飞行员( ) A6妊娠产后体能训练 (P3T) 领导( ) B2 UH-60 飞行员( ) B3 UH-60M 飞行员( ) B4 UH-72A 飞行员( ) C3 CH-47F 飞行员( ) C8 AD 空域管理 (ADAM)/BDE AVN 分队 (BAE)( ) D1 反大规模杀伤性武器 (CWMD)( ) D2 军事骑兵( ) D4 传感器管理领导( ) D5 区域支援分队 (RSE)( (添加 2510) ) D5 区域支援分队 (RSE)( (添加 2410) ) D6 作战数据分析员(待定)( ) D7 AH-64D 飞行员( ) D8 政府飞行代表( ) D9 AH-64E 飞行员( ) E1 UC-35 飞行员( ) E2 北极飞行员/操作员( ) E4 网络任务部队服务( ) E7 C-23 飞行员( ) E8 C-26 飞行员( ) E9 北极领导人( ) F3 RC-12D/G/H 飞行员( )
CONFERENCE PROCEEDiNGS [C15] HOVER: Versatile Neural Whole‑Body Controller for Humanoid Robots.Tairan He*, WenliXiao*, ToruLin, ZhengyiLuo, ZhenjiaXu, ZhenyuJiang, JanKautz, ChangliuLiu, GuanyaShi, Xiaolong Wang, Linxi “Jim” Fan † , Yuke Zhu † ICRA , 2025 [Paper] [C14] OmniH2O: Universal and Dexterous Human‑to‑Humanoid Whole‑Body Teleoperation and Learning.Tairan He*, Zhengyi Luo*, Xialin He*, Wenli Xiao, Chong Zhang, Kris Kitani, Weinan Zhang, Changliu Liu, Guanya Shi.CoRL , 2024 [Paper] [C13] WoCoCo: Learning Whole‑Body Humanoid Control with Sequential Contacts.Chong Zhang*, Wenli Xiao*, Tairan He, Guanya Shi.CoRL ( Oral ), 2024 [Paper] [C12] Learning Human‑to‑Humanoid Real‑Time Whole‑Body Teleoperation.Tairan He*, Zhengyi Luo*, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, Guanya Shi IROS , 2024 ( Oral ) [Paper] [C11] Progressive Adaptive Chance‑Constrained Safeguards for Reinforcement Learning.Zhaorun Chen, Binhao Chen, Tairan He, Liang Gong, Chengliang Liu.IROS , 2024 [Paper] [C10] Agile But Safe: Learning Collision‑Free High‑Speed Legged Locomotion.Tairan He*, Chong Zhang*, Wenli Xiao, Guanqi He, Changliu Liu, Guanya Shi.RSS , 2024 ( Outstanding Student Paper Award Finalist ‑ Top 3 ) [Paper] [C9] Safe Deep Policy Adaptation.Wenli Xiao*, Tairan He*, John Dolan, Guanya Shi.ICRA , 2024 [Paper] [C8] State‑wise Safe Reinforcement Learning: A Survey.Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, Changliu Liu.IJCAI (Survey Track) , 2023.[Paper] [C7] Probabilistic Safeguard for Reinforcement Learning Using Safety Index Guided Gaussian Process Models.
Anchor Court F10 档案商店 B11 澳大利亚科学与数学学校 (ASMS) U5 生物科学 G11 生物探索中心 D11 校园物业、设施与开发 (PFD) 运营 B10 社区花园 T7 Deirdre Jordan 村 Q6 戏剧中心 J8 地球科学 D9 教育 D5 工程 (Sir Eric Neal) B8 弗林德斯癌症创新中心 (FCIC) S14 弗林德斯巷道 J8 弗林德斯生活 Q9 弗林德斯医疗中心 (FMC) P14 弗林德斯出版社 B11 弗林德斯大学儿童保育中心 S6 健康科学 L11 健康科学演讲厅综合楼 (HSLTC) L12 人文科学 H8 信息科学与技术 (IST) C8 法律与商业 E6 图书馆 - 中央与法律 J9 图书馆 - 医学 (Gus Fraenkel) O12 图书馆 - Sturt V5 Mark Oliphant T18 市场花园 C10 马修弗林德斯剧院 J8 McHughs C10 椭圆形 - 下层 W12 椭圆形 - Sturt X6 椭圆形 - 上层 W9 Pendopo G6 物理科学 E10 物理科学工作室 D10 广场 H9 专业服务 J10 教务处 K10 科学创新学习中心 (SILC) C9 Eric Neal 爵士(工程系) B8 社会科学北区 G7 社会科学南区 F6 体育中心(Alan Mitchell) K11 体育馆 W11 学生中心 H9 Sturt 东区 V4 Sturt 体育馆 V6 Sturt 北区 W5 Sturt 南区 V5 Sturt 西区 V5 The Terrace J10 联盟 J10 南澳大利亚大学研究资料库(URRSA) B11 大学礼堂 Q9 Yungkurrinthi Inparrila 会议场所 J11 Yungkurrinthi Mande J11
C1 法案:凡提及教育资产委员会之处,均根据 1998 年第 31 章第 136 节、SI 1998/2212 号第 2(1) 条、附表 1 第 I 部分(1998 年 10 月 1 日)改为提及教育转移委员会。 C2 法案经 SI 1991/517 号第 6(2) 条(EW)(1991 年 3 月 31 日)修改。法案经 SI 1991/710 号第 9(2) 条(EW)(1991 年 3 月 28 日)修改。 C3 法案经 SI 1989/814 号第 15(2) 条、SI 1989/1359 号第 15(2) 条和 SI 1989/2470 号第 15(2) 条修改。 16(2) C4 法案经 1990 年规划(危险物质)法案(第 10 章,SIF 123:1)第 21(8) 节,附表第 7(2) 款;SI 1992/725 第 2、3 条修改(EW)(1992 年 3 月 11 日用于特定目的,其他目的为 1992 年 6 月 1 日)。 C5 法案经 1990 年城镇和乡村规划法案(第 8 章,SIF 123:1)第 79、175、195、208 节,附表 6 第 8(2) 款修改(EW)。 C6 法案经 1990/419 第 18(2) 条和 1990/1024 第 1 条修订。 14(2) C7 法案(经修改)(1992 年 9 月 30 日),由 SI 1992/2257,第 16(2) 条实施。C8 法案经 1992 年运输和工程法(第 42 章)第 23(10) 节修改 (EWS) (1993 年 1 月 1 日);SI 1992/2784,第 2(a) 条,附表 1。法案经 1994 年扩展 (1994 年 7 月 5 日),第 19 章,第 39 节,66(2)(b),附表 13 第 17 款法案经 SI 1995/401,第 9 条扩展 (1995 年 4 月 1 日)法案经 1997 年扩展 (S.) (1997 年 5 月 27 日) 8、第 48、131、154、169、180 条,附表 4 第 8(2) 款 (包括第 64、219 条) 本法令经 1997 年第 9 章第 20(4) 、35(5) 条修订 (1997 年 5 月 27 日),附表 3 第 7(2) 款 (包括第 45(5) 条) 本法令经 1997 年第 10 章第 19 条、第 40(2) 条,附表第7(2) (包括第 9(3) 、 10(5) 、 38(6) 条) 法案经 SI 1999/527 (1999 年 3 月 3 日)第 6 条修改 法案经 SI 2001/3962 (2002 年 4 月 1 日)第 7(2) 条修改
C7 1 330µF 20% 50V 铝电解电容器 (10mm) PANASONIC EEU-EB1H331 D1 1 TVS 二极管,600W (SMB) ST MICROELECTRONICS SM6T36CA D2 1 功率肖特基二极管,60V,1A (SMA) ST MICROELECTRONICS STPS1L60A D3 1 功率肖特基二极管,60V,1A (SMA) DIODES INCORPORATED B160-13-F J1 1 USB B 型连接器 FCI CONNECT 61729-0010BLF J2, J3 2 2 针绿色 PC 接线端子 DEGSON ELECTRONICS DG128-5.0-02P-14 JU1 1 2x4 双排接头,中心距 0.1 英寸,切割以适合 SULLINS ELECTRONICS PBC04DAAN JU3-JU5、JU8、JU9、JU13 6 2 针单排接头,中心距 0.1 英寸,切割以适合 MOLEX 22-28-4023 JU6、JU12、JU14、JU15 4 3 针单排接头,中心距 0.1 英寸,切割以适合 MOLEX 22-28-4033 LED1 1 绿色 LED (1206) KINGBRIGHT APT3216SGC R1 1 1K OHM 1% 电阻 (0805) - R2 1 10K OHM 1% 电阻 (0805) - R6 1 40.2K OHM 1% 电阻 (0805) - R7 1 12.1K OHM 1% 电阻 (0805) - R8 1 6.2K OHM 1% 电阻 (0805) - R9、R11 2 2.2M OHM 5% 电阻 (0805) - R13、R14、R17 3 100K OHM 1% 电阻 (0805) - R15 1 4.7K OHM 1% 电阻 (0805) - R16 1 50K OHM 微调电位器 BOURNS 3296W-1-503LF TP1 1 白色测试点 KEYSTONE 5002 TP2、TP4、TP5、TP7 4 黑色测试点 KEYSTONE 5001 TP3、TP6、TP8 3 红色测试点 KEYSTONE 5000 TP9 1 紫色测试点 KEYSTONE 5119 TP10 1 绿色测试点 KEYSTONE 5116 TP11 1 灰色测试点 KEYSTONE 5118 U1 1 1A 可调节高精度过流和过压保护器 (16 引脚 TQFN 3mm X 3mm) MAX17523ATE+ C8 0 未安装;330µF 20% 50V 铝电解电容器 (10mm) PANASONIC EEU-EB1H331 R10、R12 0 未安装;1% 电阻器 (0805) - PCB 1 PCB:MAX17523 评估套件 -
摘要:本研究介绍了一种创新、快速的 RP-HPLC 方法,用于同时测定盐酸二甲双胍 (MET) 和厄格列净 L-焦谷氨酸 (ERT)。这种新方法简单、准确、精确且灵敏度高。在 40°C 下使用 HPLC 柱(C8,4.6 x 150 毫米 5 微米)和流动相对两种药物的分离进行优化,流动相由辛烷磺酸钠(pH 4)中的三乙胺:MeOH:ACN 组成,比例分别为 45:45:10,流速为 1.0 毫升/分钟。方法的特异性表明,在药物的保留期内没有来自安慰剂或稀释剂的干扰。在不同浓度下进行的准确度和线性研究显示出良好的精密度,校准曲线表现出高度相关性,即 ERT 和 MET 的 R 2 = 0.9982 和 0.9996。精密度评估了重复性和中间精密度,均获得了令人满意的结果。在不同条件下评估了稳健性,包括波长和流速变化,显示出可接受的结果。检测限 (LOD) 和定量 (LOQ) 表现出良好的灵敏度。分析方法验证保证了同时测量 MET 和 ERT 的建议方法的准确性和可靠性。在三种不同的 pH 介质(0.1 N HCl 和 pH 4.5 和 pH 6.8 的缓冲溶液)下还观察到了定制新配方的完全溶出曲线 (CDP)、Ertozin-M(7.5/500mg)与创新片和 Segluromet(7.5/500mg)的比较分析。本研究是根据国际协调会 (ICH) 关于分析程序验证的指南 Q2(R2) 和关于溶出度测试的 Q4B 附件 7(R2) 进行的。我们发现,开发的 HPLC 方法非常适合在开发定制药物制剂的质量控制常规分析中联合评估盐酸二甲双胍和艾格列净 L-焦谷氨酸。关键词:反相高效液相色谱法、盐酸二甲双胍、分析方法验证、溶出曲线、艾格列净 L-焦谷氨酸简介
[J1] M. P. Bonkile和V. Ramadesigan,“使用基于物理的电池模型在独立的PV-Battery Hybrid Systems中使用基于物理的电池模型”,《储能杂志》,23,258-268,2019。[J2] M. P. Bonkile和V. Ramadesigan,“基于PV-Battery Hybrid Systems的物理模型:热管理和降解分析”,《储能杂志》,31,1014585,2020。[J3] M. P. Bonkile,A。Awasthi,C。Lakshmi,V。Mukundan和V.S.ASWIN“汉堡方程式的系统文献评论以及最近的进步”,Pramana-of Physics,90,69,2018。[J4] M. P. Bonkile,A。Awasthi和S. Jayaraj,“有或没有Hopf-Cole转换的汉堡方程的比较数值调查”,国际融合计算杂志,2(1),54-78,2016。[b1] M. P. Bonkile,A。Awasthi和S. Jayaraj,“基于用于修改的凯勒盒子方案的数值模拟:不稳定的粘性汉堡方程”,数学分析,应用程序及其应用及其应用及其应用程序,Springer(143)565-575-575,2015,M.P.15,2015 c1 [c1] [C1] [C1] [C1] [C1] [C1] [C1] [C1] [C1] [C1]] “ PV-Wind-Battery混合动力系统:使用P2D电池模型的电力管理控制策略”,第236电化学协会(ECS)会议,美国亚特兰大,2019年。[C2] M. P. Bonkile,V。Ramadesigan和S. Bandyopadhyay,“使用基于物理的电池模型在具有不确定性的混合动力系统中使用基于物理的电池模型”,第236届ECS会议,Atlanta USA,2019年。[C4] M. P. Bonkile,V。Ramadesigan和S. Bandyopadhyay,“使用基于物理模型的储能设计在独立的PV-Battery Hybrid Systems中使用物理模型”,印度印度Pandit Deendayal Petroleum University,Icteta 12 The Icteta,2019年,2019年。[C3] M. P. Bonkile和V. Ramadesigan,“使用基于物理的电池模型的独立光伏电池式混合系统建模”,第2届国际国际大会在印度的大规模可再生能源集成在印度和可再生能源部,印度新德尔希,2019年,印度和可再生能源部的大规模可再生能源整合。[C5] M. P. Bonkile,K。S。Pavan和V.Ramadesigan,“使用基于物理的电池模型的独立PV玻璃系统模拟”,计算科学研讨会,印度科学研究所(IISC)印度,2017年,2017年。[C6] M. P. Bonkile,A。Awasthi和S. Jayaraj,“基于与时间依赖边界条件的不稳定,二维的二维不同使用方程的隐式方案的数值研究”,第61 ISTAM,Vellore India,2016年。[C7] M. P. Bonkile,A。Awasthi和S. Jayaraj,“在Unsteady Burgers'方程式上的高阶时间集成算法的数值实施”,ICMMCS,印度技术学院Madras India India India,2014年,2014年。[C8] M. P. Bonkile,A。Awasthi和S. Jayaraj,“通过Mol on Mol on Steady Burgers'方程式实施了第四阶订单时间集成公式的数值”,印度ISTAM 59,2014年,ISTAM,2014年。
