寡脱氧核苷酸的杂交特性已经以多种技术为特征(1-4)。在适当条件下,寡核苷酸与DNA中的特定位点杂交(4,5)。此外,可以将完美的碱基配对的核苷酸双链体与包含单个不匹配的碱基对(4-6)的复式区分开。我们利用寡核苷酸的杂交特性在开发一种分离特定克隆的DNA序列的方法中(5)。我们的一般方法是化学合成寡核苷酸的混合物,这些寡核苷酸代表给定蛋白的一小部分氨基酸序列的所有可能的密码子组合。在该混合物中必须是与蛋白质该部分编码的DNA相结合的一个序列。这种互补的寡核苷酸将与来自蛋白质的编码区域的DNA形成完美的基础复式,而混合物中的其他寡核苷酸将形成不匹配的双链体。在严格的杂交结合下,只有完美匹配的双链体将形成,从而允许将寡核苷酸的混合物用作特定的杂交探针。混合序列寡核苷酸探针应允许分离出已知氨基酸序列的任何蛋白质的克隆DNA序列。我们已将这种方法应用于人A2-微球蛋白(AM)的克隆cDNA序列的分离。AM是一种从尿液中分离出来的小蛋白(分子量11,800)。随后,发现A3〜m与主要组织相容性基因座的细胞表面抗原相关(8、9)。A2M的确切功能尚不清楚,尽管最近的证据表明该分子可以稳定辅助蛋白的三级结构(10)。氨基酸序列已从包括人类在内的四个物种中定位为F2M(11)。我们已经使用氨基酸序列来设计探针,以分离到人类2M的克隆cDNA。
审查的抽象目的是由乙型肝炎病毒(HBV)引起的慢性肝炎B(CHB)是全球晚期肝病和肝细胞癌(HCC)的主要原因。HBV复制的特征在于合成共价闭合(CCC)DNA,而抗病毒核(T)IDE类似物(NUC)的靶向是护理标准标准的关键方式。尽管HBV复制成功地抑制了经过治疗的患者,但他们仍有患HCC的风险。虽然功能治疗(以HBSAG损失为特征)是新型抗病毒药疗法的第一个目标,但消除CCCDNA的治疗疗法仍然是最终目标。本评论总结了新型治疗策略的发现和发展的最新进展及其对CCCDNA生物学的影响。最近十年的最新发现,在理解CCCDNA生物学方面取得了重大进展,包括发现宿主依赖性因素,CCCDNA转录的表观遗传调节和免疫介导的降解。目前以直接或间接方式针对CCCDNA的几种方法正在发现,临床前或早期临床发育的阶段。示例包括基因组编辑方法,针对宿主依赖性因素或表演基因调控的策略,核素蛋白质调节剂和免疫介导的降解。总结直接定位的CCCDNA策略仍处于开发的临床前阶段,但带帽子装配调节器和基于免疫的方法已经达到了临床阶段。组合疗法提供了更多机会来克服当前方法的局限性。临床试验正在进行评估其对患者的功效和安全性,包括对病毒CCCDNA的影响。
请注意:根据这些比例,可以扩大此反应(使用更多珠子)。4. 在 42°C 下孵育至少 1 小时。定期用手轻轻搅拌珠子。
50 次反应 产品描述 核 DNA (nucDNA) 损伤被广泛认为是癌症、神经退行性疾病、线粒体功能障碍和各种与年龄相关的疾病发展的关键因素。核 DNA 损伤是评估药物和环境毒素基因毒性的重要生物标记。ScienCell 的人类核 DNA 损伤定量 qPCR 检测试剂盒 (HNDQ) 的工作原理是各种 DNA 损伤可以阻碍 DNA 聚合酶的进展。因此,在相同条件下,损伤较少的 DNA 比受损的 DNA 更容易扩增。损伤水平可以用损伤的泊松分布来量化,以每千碱基对的损伤数或目标样本与对照样本的完整 nucDNA 的百分比表示。此外,我们的检测方法可以通过测量去除 DNA 损伤剂后目标 DNA 扩增随时间的恢复来跟踪 DNA 修复动力学。该检测方法监测 nucDNA 的完整性。引物组(目录号 #9008a 和目录号 #9008b)可识别和扩增人类核DNA 上最保守区域的序列。我们利用 2X LanaRana 长距离 PCR 主混合物(目录号 #MB6098)和人类长核DNA 引物组(目录号 #9008a)来扩增 8.1 kb 长的 DNA 片段。为了扩增 151 bp 短核DNA 片段,我们使用 2X GoldNStart TaqGreen qPCR 主混合物(目录号 #MB6018a-1)和人类短核DNA 引物组(目录号 # 9008b)。未受损(未处理)和受损(紫外线处理)细胞中的人类 DNA 作为反应的阳性和阴性对照。
HI-C测序和数据分析测序是在Illumina Novaseq平台上进行的。HI-C读数是使用三型读物处理的,并与HIC-PRO对齐HG38人类基因组参考。使用Juicebox进行可视化和接触归一化,并使用Juicer Tools GPU打ic来调用相互作用。根据打ic的相互作用调用手动策划映射到eCDNA的映射。使用纯染色体模式检测到染色体体相互作用。4
描述Thermo Scientific™First Strand cDNA合成试剂盒是一个完整的系统,用于有效合成mRNA或总RNA模板的第一链cDNA。该试剂盒使用M-Mulv逆转录酶,与AMW逆转录酶相比,RNase H活性较低。酶在37°C下保持活性,适合于9 kb的cDNA合成。套件提供的重组Thermo Scientific™Ribolock™RNase抑制剂可有效保护RNA在高达55°C的温度下免于降解。该套件均配有寡核(DT)18和随机己酯引物。随机六聚体引物与非特异性结合,并用于合成总RNA种群中所有RNA的cDNA。寡(DT)18底漆选择性地向poly(a)RNA的3末端退火,仅从poly(a)尾mRNA中合成cDNA。基因特异性底漆也可以与试剂盒一起使用,以从指定序列中进行质合。与该系统合成的第一链cDNA可以直接用作PCR或实时PCR中的模板。它也是第二链cDNA合成或线性RNA扩增的理想选择。可以将放射性和非放射性标记的核苷酸纳入第一个链cDNA,以用作包括微阵列在内的杂交实验的探针。
一种替代全长 CFTR cDNA 的“通用策略”可治疗 99% 以上的囊性纤维化 (pwCF) 患者,无论他们的具体突变如何。基于 Cas9 的基因编辑被用于在气道基底干细胞的 CFTR 基因座处插入 CFTR cDNA 和截短的 CD19 (tCD19) 富集标签。该策略将 CFTR 功能恢复到非 CF 水平。在这里,我们通过评估 CFTR cDNA 插入后的基因组和调控变化来研究这种方法的安全性。首先通过使用 CAST-seq 量化基因重排来评估安全性。在验证编辑和富集的气道细胞中恢复的 CFTR 功能后,使用 ATAC-seq 表征 CFTR 基因座开放染色质谱。使用 scRNA-seq 评估编辑细胞中的再生潜力和差异基因表达。 CAST-seq 发现 0.01% 的等位基因发生易位,主要发生在非致癌脱靶位点,1% 的等位基因发生大量插入缺失。分化气道上皮细胞的开放染色质谱除 CFTR cDNA 和 tCD19 盒对应的区域外,没有出现明显变化,表明基因调控没有可检测到的变化。编辑后的干细胞产生的气道细胞类型与对照相同,基因表达的改变最小。总体而言,通用策略显示出轻微的不良基因组变化。
癌细胞基因组含有正常细胞中没有的环状染色体外 DNA (ecDNA) 元素。临床样本分析表明,它们在大多数癌症中很常见,它们的存在预示着不良预后。它们通常含有高表达的增强子和驱动致癌基因。环状 ecDNA 拓扑结构导致染色质开放构象并产生新的基因调控相互作用,包括与远端增强子的相互作用。着丝粒的缺失导致细胞分裂过程中 ecDNA 随机分布,并且编码在其上的基因以非孟德尔方式传播。ecDNA 可以整合到染色体 DNA 中和退出。特定 ecDNA 的数量会随着治疗而改变。这种重塑癌症基因组的动态能力挑战了长期存在的基本原理,为肿瘤异质性、癌症基因组重塑和耐药性提供了新的见解。
