Marelli 今天宣布,将在即将举行的上海车展(4 月 18 日至 27 日)上重点展示其座舱数字孪生技术 DigiMate。这种端到端基础设施可以复制座舱硬件和软件,加速车辆软件开发,大大降低汽车 OEM 的成本,并使他们能够更快地将创新推向市场。Marelli 的 DigiMate 为 OEM 提供了一个突破性的机会,可以更快、更高效地将创新的联网汽车服务推向市场。该技术旨在简化模拟、验证和测试活动,从而无需多个物理座舱。相反,虚拟座舱副本可以在云端并行运行数千个实例,从而大大缩短开发时间。此外,Marelli 的解决方案可以实现更具成本效益的无线软件更新,使 OEM 能够快速响应新客户请求,并显著缩短新软件更新的上市时间。在第一个 DigiMate 应用程序中,Marelli 集成了 QNX® Neutrino® 实时操作系统 (RTOS),可在由 Amazon Web Services (AWS) Graviton2 处理器支持的 Amazon Elastic Compute Cloud (Amazon EC2) 实例上本地运行。这构建了一个支持云的软件开发强国,将极大地提高 OEM 将产品推向市场的效率。Marelli Electronic Systems 副总裁兼工程与创新主管 Yannick Hoyau 解释说:“通过结合 Marelli 和 AWS 服务的优势,我们可以提供消费者想要的驾驶体验,同时确保安全性和可靠性。DigiMate 使开发人员能够减少软件开发所需的时间和资源,以更高效、更经济的方式交付软件演进。”“通过云端为我们的客户提供我们的基础 QNX 软件产品,对于嵌入式开发人员来说,这是一个重大的改变,因为他们可以轻松访问并扩展。”BlackBerry QNX 产品管理和战略副总裁 Grant Courville 说道。在上海车展上,Marelli 将展示 DigiMate 如何促进开发人员运营并提高 OEM 利润。欢迎与会者前往 Marelli 的展位 1.2H/1BF015,亲身体验这项突破性技术。
这项工作的目的是提出一个热模型,以预测使用HVAC系统的小型汽车的客舱内的平均空气温度。所采用的模型是一个集体参数模型,该模型解释了作用在机舱上的九种热源。此外,该模型提出了一种方法,用于计算蒸发器出口处温度的方法,考虑到其入口和出口之间的线性温度下降是敏感热,潜热,蒸发器输入温度,绝对湿度,焓和特定热量的函数。在各种操作条件下在商用车上进行了16次实验测试,以验证所提出的模型。实验结果和理论结果之间的最大平均相对偏差为17.73%。
批准论文:使用计算流体动力学对军用飞机客舱的热舒适性分析,由 İREM KÖSE 提交,部分满足中东技术大学机械工程理学硕士学位的要求,由自然与应用科学研究生院院长 Halil KALIPÇILAR 教授提交
为了比较呼吸道病原体的传播,我们进行了计算流体动力学 (CFD) 模拟,以追踪波音 737 飞机上的乘客和类似室内商业空间中的人咳嗽时释放的颗粒。对模拟数据进行后处理,以计算两种环境中附近人员吸入的颗粒量。还分析了不同气流速率、进气口位置、指示者 (咳嗽) 和易感者 (吸入) 之间的定位和距离的影响。将室内环境中空气中颗粒的去除、通风和表面沉积与飞机客舱进行了比较。在飞机客舱中,80% 的颗粒去除速度比室内商业空间快 5 到 12 倍;最终导致飞机客舱中吸入的颗粒质量减少了 7 倍。简介
当考虑像飞机客舱这样非常特殊的领域时,通信要求就会提高。乘客的不同需求往往与客舱内的严格限制不相容。如今,机上娱乐 (IFE) 系统在现代航班中得到了广泛的应用。IFE 系统通常由座椅电子盒、乘客终端硬件、乘客控制单元、用于选择服务的遥控器以及视频显示单元(屏幕)组成。在这些系统中使用无线技术可以提高乘客和航空电子公司的满意度。然而,客舱内部并不是一个灵活的环境;可靠性和安全性是两个强制性要求,因此对其施加了不同的限制。这意味着现成的技术(包括天线、网络拓扑、网络协议和服务在内的硬件)通常不适合这样的环境。因此,必须设计和实施一种新的架构。本文旨在整合现有的异构通信技术,展示其优缺点,同时考虑到飞机客舱内施加的通信限制。由此,提出了一种新的无线异构架构。此外,为了能够使用这种架构,我们提出了一种新协议,该协议利用智能天线技术允许乘客控制单元被自主识别和配置
1.1 指派客舱乘务员在飞机上执行安全相关职责是附件 6 的一项法律要求。附件 6 第 I 部分第 12.1 段要求运营商以令国家当局满意的方式,确定其运营的每种飞机所需的最低客舱乘务员人数,以便安全迅速地疏散飞机,以及在紧急情况或需要紧急疏散的情况下必须执行的必要职能。
因其形状而消耗更少的能量(https://www.tudelft.nl/lr/flying-v/)。目前,航空运输约占人类活动每年产生的 360 亿吨二氧化碳的 2%(https://www.cleansky.eu/benefits),这表明需要开发一种更省油的飞机。这款 Flying V 最初是柏林工业大学学生 Justus Benad 在汉堡空客的毕业论文项目中提出的构想(https://www.tudelft.nl/lr/flying-v/)。在 Flying V 中,客舱、货舱和油箱都集成在机翼结构中。Flying V 搭载的乘客数量与空客 A350 大致相同,这是这款新飞机的基准。Flying V 比 A350 小,与可用体积相比,湿润表面积更小。结果阻力更小,从而导致相同距离所需的燃料更少。目前,Flying V 正在开发中使用传统煤油发动机,但也会研究其他推进方式,如氢或电子煤油,但这不是本研究的目的。
系统开发阶段的逐步数字化正在缩短开发时间并降低成本。同时,更复杂系统中的交互越来越多,嵌套程度也越来越高,这影响了人类对系统依赖关系的理解以及对这些依赖关系的建模。这带来了数字化描述系统及其相互关系所需的知识(规则、法规、要求等)的挑战。飞机就是这种系统的一个例子。在实践中,机舱及其系统的技术设计通常与初步飞机设计分开进行,机舱结果将在飞机开发过程的后期进行整合。本文提出了一种概念设计方法,该方法能够根据初步飞机设计数据(参数集)进行机舱系统布局。因此,开发了一个中央数据模型,将机舱组件链接到多个学科,以实现自动布局。在这里,知识存储在本体中。将本体与设计规则链接并导入外部参数,可以生成机舱系统初步设计所需的缺失信息。设计规则基于已收集并形式化的需求、安全法规以及设计解释的专家知识。使用本体,可以实例化 XML 数据结构,其中包含有关属性、系统关系的所有信息
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过适当的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形开始(具有足够幅度、相位和频率的正弦信号,甚至低通滤波的参考噪声信号)。在测试单通道系统后,通过额外的模拟验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号在经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
