。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 3 月 20 日发布。;https://doi.org/10.1101/2023.03.17.533119 doi:bioRxiv 预印本
通过在喷嘴和喷嘴之间施加高电压,将喷嘴挤出的聚合物熔体电吸向收集器,从而无需任何溶剂即可形成聚合物纤维。[6] 与 MES 不同,MEW 引入了计算机辅助打印头相对于接收基板的相对运动,从而能够对生成的纤维进行数字控制定位,从而形成边界明确的微结构。与通常生产直径超过 100 微米的纤维的传统挤出数字沉积技术相比,MEW 可轻松产生从数百纳米到数十微米的定位良好的纤维。[2,3,5,7,8] 此外,由于静电吸引,该技术可以精确堆叠纤维,从而形成边界明确的高壁。[1] 凭借所有这些特性,MEW 已被证明是一种制备超细纤维基生物支架的强大技术,在组织工程和再生医学中具有巨大潜力。[8–12]
摘要:天然聚合物由于其内在的生物相容性和仿生性,已在很大程度上被研究为组织工程应用的脚手架材料。传统的脚手架制造方法提出了几个局限性,例如使用有机溶剂,获得非均匀结构,孔径的变化以及缺乏孔隙互连性。这些缺点可以根据使用微流体平台的创新和高级生产技术来克服这些缺点。液滴微流体和微流体旋转技术最近在组织工程领域中发现了可用于生产微粒和微纤维的应用,这些微粒和微纤维可以用作支架或三维结构的基础。与标准制造技术相比,基于微流体的技术具有多种优势,例如获得具有均匀尺寸的颗粒和纤维的可能性。因此,可以获得具有极为精确的几何形状,孔分布,孔相互连接性和均匀孔径的支架。微流体也可以代表一种更便宜的制造技术。在这篇综述中,将说明基于天然聚合物的微粒,微纤维和三维支架的微流体制造。还将提供其在不同组织工程领域的应用概述。
都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。 Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰
在这里,我们回顾了修复关节软骨的组织工程的最先进。首先,我们描述了内源软骨的分子,细胞和组织学结构和功能,重点是软骨细胞,胶原蛋白,细胞外基质和蛋白聚糖。然后,我们在支架上探索体外细胞培养,讨论维持或获得软骨细胞表型所涉及的困难。接下来,我们讨论用于这些脚手架的各种化合物和设计,包括天然和合成生物材料以及多孔,纤维和多层体系结构。然后,我们报告了不同细胞支架的机械性能,以及在小动物中体内植入后这些脚手架的成功,在结构和功能上类似于天然组织的组织中。最后,我们重点介绍了该领域的未来趋势。我们得出的结论是,尽管过去15年中取得了重大的技术进步,并不断改善动物软骨修复实验的结果,但临床上有用的关节软骨再生的临床有用植入物的发展仍然是一个挑战。
三维 (3D) 打印,也称为增材制造 (AM),在可定制和高精度部件的制造方面经历了快速发展阶段。得益于 3D 打印技术的进步,现在可以将细胞、生长因子和各种生物相容性材料一起打印成任意复杂的 3D 支架,这些支架在结构和功能上与天然组织环境具有高度相似性。此外,光学 3D 打印方法在成型效率、分辨率和适用材料选择方面具有压倒性优势,无疑已成为组织工程 (TE) 中支架制造最合适的方法。在本文中,我们首先全面、最新地回顾了当前用于支架制造的光学 3D 打印方法,包括传统的基于挤压的工艺、选择性激光烧结、立体光刻和双光子聚合等。具体来说,我们回顾了光学设计、材料和代表性应用,然后进行了制造性能比较。重要指标包括制造精度、速率、材料和应用场景。最后,我们总结并比较了每种技术的优缺点,以指导光学和 TE 社区的读者在不同的应用场景下选择最合适的打印方法。
1个生物医学科学研究生课程,埃尔米·尼奥·奥梅托基金会(HermíNioOmetto Foundation),阿拉斯(Araras)13607-339,巴西SP; juliaventurini.h@gmail.com(J.V.H。); carinabasqueira@fho.edu.br(c.b.l.); luizahelaehil@gmail.com(l.v.h。); gabichiarotto@fho.edu.br(G.B.C.); santamariajr@fho.edu.br(M.S.-J.)2曼彻斯特大学工程学院机械,航空航天和土木工程系,英国曼彻斯特大学M13 9PL; boyang.huang@manchester.ac.uk 3 Orthodontics的研究生课程,HermíNioOmetto Foundation,Araras,Araras 13607-339,SP,巴西; isaque__22@hotmail.com 4 Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Jurong West 639798, Singapore * Correspondence: paulojorge.dasilvabartolo@manchester.ac.uk or pbartolo@ntu.edu.sg (P.B. ); caetanogf@fho.edu.br(G.F.C.) †这些作者为这项工作做出了同样的贡献。2曼彻斯特大学工程学院机械,航空航天和土木工程系,英国曼彻斯特大学M13 9PL; boyang.huang@manchester.ac.uk 3 Orthodontics的研究生课程,HermíNioOmetto Foundation,Araras,Araras 13607-339,SP,巴西; isaque__22@hotmail.com 4 Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Jurong West 639798, Singapore * Correspondence: paulojorge.dasilvabartolo@manchester.ac.uk or pbartolo@ntu.edu.sg (P.B.); caetanogf@fho.edu.br(G.F.C.)†这些作者为这项工作做出了同样的贡献。
抗体和非抗体蛋白支架的治疗范围仍然受到过限制在药物内药物靶标。在这里,我们证明了字母支架可以设计成针对细胞培养蛋白拮抗剂,以抗诱导的髓样白血病细胞分化蛋白MCL-1(一种癌症中的细胞内靶标),通过将MCL-1的临界B-Cell淋巴瘤3 Helix与Alphababody和Traphabody proly的细胞proltiendii授予关键B-Cell淋巴瘤2通过接种。将白蛋白结合部分的引入将工程字母的血清半衰期扩展到治疗相关的水平,并基于骨髓瘤细胞系中的小鼠肿瘤异种移植物的给药,从而减少了肿瘤负担。晶体结构提供了应用设计原理的结构蓝图。总体而言,我们提供了用于使用字母内疾病介质使用字母的概念验证,迄今为止,该介质一直留在小分子疗法的领域中。
摘要。背景/目标:从抗癌活性方面确定三个基于伊萨蛋白的支架的最佳。材料和方法:基于伊萨蛋白的支架的合成是通过反应形成席夫碱的。由瑞士目标预测工具和Autodock Vina进行分子对接组成。使用WST1生存力测定法确定抗癌活性和细胞毒性。结果:合成了三个支架(IA,IB和IC),并以良好的反应产率确认。瑞士目标预测工具显示了激酶的趋势。分子对接测定法证明IC对CDK2的亲和力更高。抗癌活性测定法被认为是针对癌细胞系的最活跃的。细胞毒性导致非癌细胞的细胞毒性表明缺乏选择性。结论:在抗癌活性方面,支架IC被确定为最好的,这些作用可能是由于CDK2的抑制作用所致,如分子对接所证明的那样。
版权所有 © 20XX John Wiley & Sons Ltd. 代表美国陶瓷学会。保留所有权利。这是以下文章的同行评审版本:万古霉素负载聚己内酯/聚氧化乙烯/羟基磷灰石 3D 支架的直接墨水书写,最终版本已在 https://doi.org/10.1111/jace.18048 上发布。本文可根据 John Wiley & Sons Ltd 的自存档条款和条件用于非商业目的。