摘要 我们提出了 3DGAN,用于模拟未来高粒度量热仪的三维图像输出。我们证明了生成对抗网络 (GAN) 在生成科学数据方面的有效性,同时在大量输入变量中保持对各种指标的高准确度。我们展示了迁移学习概念的成功应用:我们训练网络模拟来自较小范围的初级能量的电子簇射,然后进一步训练五倍大的范围(模型无法直接训练更大的范围)。同样的概念被扩展到为其他粒子生成簇射,这些粒子的大部分能量都沉积在电磁相互作用中(光子和中性介子)。此外,还探索了带电介子簇射的生成,更准确的努力需要来自其他探测器的额外数据,而这些数据不在当前工作的范围内。我们的进一步贡献是演示了如何使用 GAN 生成的数据进行实际应用。我们使用 GAN 生成的数据训练第三方网络,并证明响应类似于使用蒙特卡罗模拟数据训练的网络。GAN 生成的阵雨对各种物理特征的准确度在蒙特卡罗的 10% 以内,速度提高了三个数量级。通过分布式训练可以进一步提高训练和推理的速度。
CMS电磁热量表(ECAL)是由约75000铅钨(PBWO 4)晶体制成的同型热量表。它位于跟踪器和辐射热量计之间,分为两个主要部分:枪管(crystal size:2。2 x 2。2 x 23厘米),覆盖伪to | η| <1。479和端盖(晶体大小:2。9 x 2。9 x 23厘米),覆盖假性1。479 <| η| <3。0。ECAL对于重建光子和电子是必需的,以及喷气机能量和缺失横向动量的测量[1]。当电子或光子横穿ECAL时,它将能量沉积在多个晶体中(“充值”)。簇是通过收集最大能量的能量沉积物来建造的。每个群集归因于一个粒子或几个隔板颗粒。但是,电子和光子可以与ECAL前面的材料相互作用。在这种情况下,电子发射Bremsstrahung光子和光子转换为电子对,在ECAL中产生附近的多个簇。这些簇必须合并以重建初始粒子的能量。此组合称为超级收集器[2]。当前,几何方法用于重建供应商。首先,找到具有在给定阈值较高的(种子)上方的能量的簇[2]。然后,在种子周围打开一个窗口,其形状类似于(η,ϕ)平面中的胡须。之所以选择这种形状,是因为簇沿横向ϕ轴而不是由于CMS磁场引起的纵向η轴(3.8 t)。窗口的大小在种子的η位和cluster的能量上。最后,所有落入定义窗口中的群集被认为是超集群的一部分。由于几何窗口的形状,所述算法称为“胡须”。
目前,NPL 高能光子束中水吸收剂量的主要标准是石墨热量计。然而,辐射剂量测定中感兴趣的量是水吸收剂量。因此,NPL 正在开发一种基于水热量计的新水吸收剂量标准。热量计在 4 DC 下运行,温度控制由液体和空气冷却相结合提供。热量计的密封玻璃内胆设计旨在最大限度地减少非水材料对吸收剂量测量的影响。在 6、10 和 19 MV 光子束中进行的水吸收剂量测量与使用主要标准石墨热量计确定的测量不确定度一致。此外,使用水热量计测量的水吸收剂量与基于 6OCO γ 辐射的空气比释动能标准的测量不确定度一致。水热量计的开发将导致 NPL 的剂量测定系统非常强大,其中可以使用三种独立技术确定水吸收剂量。
目前,NPL 高能光子束中水吸收剂量的主要标准是石墨量热仪。然而,辐射剂量测定中感兴趣的量是水吸收剂量。因此,NPL 正在开发一种基于水量热仪的新水吸收剂量标准。量热仪在 4 DC 下运行,温度控制由液体和空气冷却组合提供。量热仪的密封玻璃内胆设计旨在最大限度地减少非水材料对吸收剂量测量的影响。在 6、10 和 19 MV 光子束中进行的水吸收剂量测量在测量不确定度范围内与使用主要标准石墨量热仪确定的测量不确定度一致。此外,使用水热量计测量的水吸收剂量与基于 6OCO γ 辐射空气比释动能标准的测量结果在误差范围内一致。水热量计的开发将为 NPL 带来非常强大的剂量测定系统,其中可以使用三种独立技术确定水的吸收剂量。
对于计量机构使用的每种热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
evs/phevs电动汽车/插电式混合动力电动汽车FMECA故障模式,效果和关键分析SOC的电荷型HEV混合动力汽车PHEV插件插件混合电动汽车BEV电池电动汽车IEA IEA国际能源ACEA ACEA欧洲汽车公司欧洲汽车制造商' lithium polymer SEI solid electrochemistry interphase IEC International Electrotechnical Commission TR Thermal runaway DSC differential scanning calorimeter ARC accelerated rate calorimetry C80 Calvet calorimeter SH self-heating XPS X-ray photoelectron spectroscopy TOF-SIMS Time Of Flight - Secondary Ion Mass Spectrometry NMR MAS Nuclear magnetic resonance Magic angle spinning XRD X射线衍射EPO EPO欧洲专利办公室PEO聚乙烯氧化物PVD物理蒸气沉积PEG聚乙烯甘油CMC CMC羧甲基纤维素磷酸铁磷酸铁含液含量LMC甲酸甲酯
对于计量机构使用的每个热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
- CMS HGCAL项目(CERN)的电子协调员(自2015年以来) - Calice International合作的电子协调员(2003-2023) - CNRS Extreme Instrumenteration Instrumenteration Instrumenteration Intermogrigartiy Interdirgipary Program的科学协调员(2012-2014)(2012-2014) - EUDAID/AIDAS AIDAS AIDAID AIDAS/AIDAEV AIDAVAS/AIDAS20202020202020202020年2月20日( Atlas Lar Calorimeter的电子召集人(1994-2003)
