仿真在解释大型强子对撞机(LHC)实验的碰撞数据以及与理论预测的测试对齐中起着至关重要的作用。在模拟碰撞数据中所带来的独特挑战,包括高维特征空间和缺乏可拖动的可能性模型,启发了一系列深度学习解决方案[1,2]。特别是,对于模拟检测器中的粒子相互作用,核心挑战是有限的计算资源,以对热量计中的粒子阵雨建模所需的极端细节主导。在这里,基于Geant 4 [3 - 5]的蒙特卡洛模拟的传统方法是强大但资源高度的 - 占据了地图集模拟链中最大的时间[6]。在未来的高光度LHC运行中,热量计模拟将需要应对更高的数据速率,从而可能成为物理分析的限制因素,而在该领域没有显着进展[7]。为了大大加快热量计模拟的速度,已经采取了许多努力。虽然快速的淋浴模型已成功部署在LHC实验[8,9]中,但准确性却有限。最近,深层生成模型的出现导致了它们的广泛流行和解决这项任务的潜力。应用于量热计的第一个生成模型
在 NEVOD-DECOR 实验中,研究了介子束的能量特性,旨在解决“介子之谜”(与计算结果相比,宇宙射线中多介子事件过多)。实验装置包括一台切伦科夫水量热器和一台坐标跟踪探测器。介子束的能量沉积是通过 NEVOD 量热器的响应来测量的,坐标跟踪探测器 DECOR 可以确定束中的介子数量及其到达方向。实验获得了 10 PeV 至 1000 PeV 范围内的介子束中平均能量及其对天顶角和初级能量依赖性的估计值,并与使用基于 CORSIKA 软件包的模拟计算结果进行了比较,模拟使用了 QGSJET-II-04 和 SIBYLL-2.3c 强子相互作用模型。
激光量热计是一种广泛用于测量可用激光源的波长的小线性吸收的设备。这样的仪器可以使用1-W激光测量少于10 5中的一部分。1量热计测量由于LL过程所引起的总吸收,包括两光子吸收的强度依赖性现象(TPA)。因此,本文描述的实验技术是基于对激光强度的函数的总吸收的测量。CDTE和CDSE中总吸收的量热测量作为1。06-J.LM激光强度用于获得这些材料的线性和TPA系数。可以通过使用一个简单的模型来理解结果,用于衰减,距离有距离的距离,并通过正确考虑样本中的多种反射。
抽象需要大规模生产高度准确的模拟事件样本,以在大型强子撞机上进行的ATLAS实验广泛的物理计划激发了新的仿真技术的开发。研究了深度学习算法,变异自动编码器和生成对抗网络的最新成功,以建模地图集电磁量热计对各种能量的光子的响应。使用Geant 4将合成淋浴的特性与完整检测器仿真的淋浴进行了比较。各种自动编码器和生成对抗网络都能够快速模拟具有正确的总能量和随机性的电磁淋浴,尽管某些淋浴形状分布的建模需要更多的改进。这项可行性研究表明,将来使用这种算法进行Atlas快速量热仪模拟的潜力,并显示了一种补充当前模拟技术的可能方法。
摘要。生成模型,尤其是生成对抗网络(GAN),正在作为蒙特卡洛模拟的可能替代方法。已经提出,在某些情况下,可以使用量子gan(qgans)加速使用gan的模拟。我们提出了QGAN的新设计,即双参数量子电路(PQC)GAN,该设计由一个经典的歧视器和两个采用PQC形式的量子代理组成。第一个PQC在n -pixel图像上学习了一个概率分布,而第二个PQC则为每个PQC输入生成了单个图像的归一化像素强度。为了了解HEP应用程序,我们评估了模仿热量计输出的任务的双PQC体系结构,转化为像素化图像。结果表明,该模型可以复制尺寸降低及其概率分布的固定数量的图像,我们预计它应该使我们可以扩展到实际热量计输出。
摘要。生成模型,尤其是生成对抗网络 (GAN),正在被研究作为蒙特卡罗模拟的可能替代方案。有人提出,在某些情况下,使用量子 GAN (qGAN) 可以加速使用 GAN 的模拟。我们提出了一种新的 qGAN 设计,即双参数化量子电路 (PQC) GAN,它由一个经典鉴别器和两个采用 PQC 形式的量子生成器组成。第一个 PQC 学习 N 像素图像的概率分布,而第二个 PQC 为每个 PQC 输入生成单个图像的归一化像素强度。为了实现 HEP 应用,我们在模拟量热仪输出并将其转换为像素化图像的任务上评估了双 PQC 架构。结果表明,该模型可以重现固定数量的图像,尺寸更小,并且能够重现它们的概率分布,我们预计它应该可以让我们扩展到真实的量热仪输出。
色量热法引入了一种新颖的方法,用于通过将量子点(QD)技术集成到传统的均质量热计中,以实现高能物理(HEP)的热量计设计方法。QD的可调发射光谱为能量重建和均匀设备中的粒子识别提供了新的可能性。本文介绍了旨在验证基于QD基于QD的量量热法的可行性的色量热仪的初始概念设计。该研究通过详细的模拟评估了其预期性能,将结果与现有的量热技术进行了比较。通过嵌入闪烁体中具有不同排放特性的QD,我们旨在改善定时分辨率和纵向分割,从而为将来的HEP实验开辟了新的途径,以进行精确测量。尽管需要进一步的开发和验证,但QD增强检测器可能代表了将来的HEP实验的可行选择,为解决不断发展的粒子检测需求提供了附加的工具。
密歇根大学提议系统地评估氘化过程中过量产热的说法,并将其与核反应和化学反应产物联系起来。该团队计划结合基于闪烁的中子和伽马射线探测器、质谱仪、能够对产热进行微瓦分辨率测量的量热仪以及从头计算方法。拟议的研究将通过实验和理论探索过量产热和 LENR 的起源和机制。
加速量热仪,99,100 可接受性指数,8 绝热压缩,200 老化,106 飞机氧气火灾,171 铝及合金,8,17,18,27,31,35,47,55,83,119,123,130,132,133,137,139,146,147,149,150,173,178,179,201 ASTM 委员会 G-4,7,8,12,14,16,98,109,229 ASTM D 2863,154 ASTM G 63,13,14 ASTM G 72,99, 109 ASTM G 88, 13
