具有高镍含量的NCM电池的高能密度是替换化石燃料和促进清洁能源开发的关键优势,同时也是电池严重安全危害的根本原因。一级和次级胺可以导致公共碳酸盐电解质的开环聚合,从而导致阴极和阳极之间的隔离层,并改善电池的热安全性。在这项工作中,根据胺和电池组件之间的化学反应,在材料水平和细胞水平上都考虑了电池的安全性。在材料水平上,通过差分扫描量热法测试了胺添加剂对锂离子电池不同组件的热稳定性的影响。在细胞水平上,通过使用加速速率量热计提取热失控(TR)特性温度,测试了带有和没有添加剂的整个电池的安全性。胺的添加导致电池组件之间的某些化学反应的早期发作,以及总热量释放的显着降低和最大温度上升速率的降低,从而有效地抑制了TR。
Acid value/TAN/TBN ASTM D 974 2000.00 6000.00 7 Aromatics Gasoline Analyzer New parameter 4000.00 7 Ash content ASTM D 482 2000.00 4000.00 7 Benzene Gasoline Analyzer 6000.00 7000.00 7 Boiling range/Distillation ASTM D 86 3000.00 6000.00 7 Calorific Value (Gross/Net) Bomb Calorimeter 4000.00 7000.00 7 Carbon residue ASTM D 189 2500.00 4000.00 7 Cetane improver Diesel Analyzer New parameter 5000.00 7 Cetane index Diesel Analyzer 4000.00 7000.00 7 Cetane number Diesel Analyzer 4000.00 7000.00 7 Color Colorimeter 2000.00 3500.00 7 Corrosion IP 154/59 3000.00 5000.00 7 Density/Specific/API gravity ASTM D1298 2000.00 3500.00 7 DIPE Gasoline Analyzer 4000.00 4000.00 7 Ethanol Gasoline Analyzer 6000.00 6000.00 7 FAME Diesel Analyzer New parameter 4000.00 7 Fire point ASTM D 92 2500.00 5000.00 7 Flash point ASTM D 93 2500.00 5000.00 7 Methanol Gasoline Analyzer New parameter 4000.00 7 MTBE Gasoline Analyzer 6000.00 6000.00 7 Olefin Gasoline Analyzer New parameter 4000.00 7 PNA Aromatics Diesel Analyzer New parameter 4000.00 7 Pour point ASTM D 97 2000.00 5000.00 7 Raw oil Diesel Analyzer New parameter 4000.00 7 RON/MON Gasoline Analyzer 8000.00 10000.00 7 SAT Gasoline Analyzer New parameter 4000.00 7沉积物/不溶性物质ASTM D 4000 2000.00 4000.00 7硫ASTM D 129 4000.00 8000.00 7
在相同条件下测试的相同细胞设计中,锂离子细胞的热响应可能会大不相同,而在相同条件下测试的分布对于完全表征实验表征的分布是昂贵的。此处介绍的开源电池故障数据库包含数百种滥用测试的强大,高质量的数据,这些数据涵盖了许多商业单元格设计和测试条件。使用分数热失控的热量计收集数据,并包含弹出的热量和质量的分数分解,以及在热失控过程中细胞内部动态响应的高速同步子X射线照相。在不同的滥用测试条件下比较了热输出,质量射出和商业细胞内部反应的分布,当在每次放大器时进行标准化时,该条件在细胞中的热量输出,从细胞中射出的质量的比例有很强的正相关,其能量和功率密度。弹出的质量表明,比未发射的质量含有每克每克的热量多10×。“离群”热反应和弹出反应的原因,即极端情况,通过高速X射线照相阐明,这表明诸如排气堵塞之类的发生方式如何造成更大的危险条件。高速射线照相还证明了热失去传播和质量射出的时间分辨相互作用如何影响产生的总热量。
当前的隧道安全概念是基于常规燃料车事故的经验。未来几年的过渡将涉及使用诸如氢,天然气和电动汽车的替代燃料。中,似乎在不久的将来,中型和小型车辆将由锂离子电池(城市汽车)电动供电。带有锂离子电池(LIB)的电动汽车的主要问题在于释放速率(HRR),以及Lib Fire释放的有毒化合物。可以通过温度,电力和机械滥用来触发飞向火的热逃亡。后者通过电池管理系统(BMS)或单元架构进行管理更为复杂。在当前工作中,显示了通过指甲测试测试的LIB的初步结果。测试和建模的LIB细胞是三星INR-18650-29E。在100%的SOC达到800°C的SOC温度下测试了此类单元,最大压力值约为4 bar。测量了腔室内CO的浓度。测得的CO水平范围为3000-4000 ppm(v),与其他研究相当。Comsol上实施的模型由两个组件组成:一个1D模型,旨在通过伪两维(P2D)模型模拟电池的电化学行为,而3D模型仅模拟传热。关键字:lib; bev; hrr;有毒释放
搜索使用140 fb - 1在√𝑠= 13 = 13 TEV的proton-Proton碰撞中,搜索在辐射量激量激量仪中腐烂的中性长颗粒(LLP)。分析由三个通道组成。第一个目标配对生产的LLP,其中至少一个LLP的产生具有足够低的增强,以至于其衰减产物可以作为单独的喷气机解析。第二和第三通道的目标LLP分别与衰减衰变的𝑊或𝑍玻色子相关。在每个通道中,不同的搜索区域针对不同的运动学制度,以涵盖广泛的LLP质量假设和模型。没有观察到相对于背景预测的事件过多。higgs玻色子分支分支到成对的一对大于1%的强烈衰减中性LLP,在95%的置信度下排除在95%的置信度下,适当的衰减长度在30 cm至4.5 m的适当范围内,这取决于LLP质量,这取决于LLP质量,这是先前搜索的Hadronic Caloremeter搜索量的三个因素。与横截面高于0.1 pb的𝑍玻色子相关的长寿命深光子的产生被排除在20 cm至50 m的范围内的深色光子平均衰减长度,从而通过数量级提高了先前的Atlas结果。最后,Atlas首次对长期的光轴轴向粒子模型进行了探测,生产横截面高于0.1 Pb,在0.1 mm至10 m范围内排除了0.1 Pb。
利用 MCNP 计算非均匀体模内电子束的剂量分布并通过实验测量进行验证。 Hassan Ali Nedaie,伊朗德黑兰医科大学癌症研究所 使用 NPL 网格上的 DOSRZnrc 计算英国主要标准治疗级电子束热量计的间隙校正 Mark Bailey,英国泰丁顿国家物理实验室 辐照小组建模工作组 - 蒙特卡罗代码审查 Mark Bailey(辐照小组秘书),英国泰丁顿国家物理实验室 使用 BEAMnrc 设计 50kVp 接触式 X 射线治疗装置的平坦滤波器 Gareth M. Baugh,英国考文垂大学医院阿登癌症中心 验证 PENELOPE 蒙特卡罗代码以计算异质体模中的吸收剂量 Léone Blazy,CEA-Saclay,法国亨利贝克勒尔国家实验室 使用不同版本 MC 代码对低能锗探测器进行蒙特卡罗校准的结果 PENELOPE Robert Brettner-Messler,FJ Maringer,奥地利维也纳联邦计量测量局 Geant4 作为质子束中 Al2O3:C 发光响应的轨迹相互作用模型的传输代码 S. Greilich,Risø 国家实验室,DK-4000 罗斯基勒,丹麦 探测器死层厚度对探测器效率的影响 Mario Kedhi,阿尔巴尼亚地拉那核物理研究所 探测器效率和巧合求和 c 的计算
与整个社会一样,LHC物理学目前正在经历由现代数据科学驱动的转型。LHC物理学的实验和理论方法本质上一直是数量的,其目标是定量,系统地和全面地从基本理论方面了解数据。生成网络是现代机器学习(ML)的一个令人兴奋的概念,将无监督的密度估计与可解释的相空间中的密度估计与快速,灵活的采样和仿真相结合[1]。当前,精确生成的最有希望的杂物是使流量及其可逆网络(INN)变体,但我们会看到扩散模型和生成变压器可能会提供更好的精确和表现力平衡。LHC模拟和分析中生成网络的任务范围是广泛的。鉴于LHC模拟的模块化结构,它始于相位空间的集成和SAMPOR的[2-7],例如ML编码的过渡幅度。更多的LHC特定任务包括事件减法[8],事件不体[9,10]或超分辨率增强[11,12]。在物理相空间上工作的生成网络已被开发并测试为事件发生器[13 - 18],Parton Showers [19-23]和检测器模拟[24 - 48]。这些网络应接受第一原则模拟的培训,易于处理,有效运输,可以放大培训样本[49,50],并且 - 最重要的是 - 精确。在本文中,我们将探讨基于分类器的粒子物理学生成网络评估的优点。超越了前进,有条件的生成网络也可以应用于概率展开[51 - 56],推理[57,58]或异常检测[59 - 64],从而增强了精确要求。对于上述所有任务,标准化流量或旅馆都达到了LHC物理学所需的精度,稳定和控制的水平。控制这些属性网络性能的方法包括贝叶斯网络设置[18,65],分类器 - 剥离[18,66 - 68]和增强数据的有条件培训[18]。基于这些发展,LHC物理学需要系统地评估生成网络的性能和精度[69],例如通过新的体系结构量化可能的收益[39,70 - 72]。我们将首先定义这种系统评估的目标,然后在SEC中介绍分类器指标。2。我们将在第二节中介绍我们的喷气发射机[69]。3,并在更多细节中讨论与参考文献相似的热量计仿真。[33]4。最后,我们将展示如何使用事件权重来跟踪Sec中ML-Event Generator [18]之间的两个版本之间的进度。5。我们还将说明如何进行针对异常权重的运动学分布进行系统扫描,可以确定训练有素的网络问题以及贝叶斯网络如何帮助我们确定这种差异的原因。所有三个应用程序结合在一起,说明了在相位空间上学习的控制权重的分布是生成网络及其形状提供强大的“可解释的AI”(XAI)工具的可靠度量,该工具使我们能够系统地搜索生成模型的故障模式,确定潜在的物理学原因,并提高测试过的网络高效。
仪器 EP05、EP7、EP11、TM16.1、TM16.2、TM16.3、TM110、TM112、TM132、TM140、TM154、TM182、TM183、TM190、TM203 - 分光光度计 高级测试仪器 EP10 - 分光光度计(包括漫反射/O° 镜面反射的几何形状) 高级测试仪器 EP10、TM61、TM190 - 特氟龙氟碳垫圈 SDL Atlas Testfabrics, Inc. 高级测试仪器 EP10、TM61、TM86、TM132、TM162、TM187、TM190-加速洗涤机 SDL Atlas 高级测试仪器 EP10、TM61、TM86、TM162、TM190 - 不锈钢钢制杠杆锁罐(1 型和/或 2 型) SDL Atlas 高级测试仪器 TM008 - 标准摩擦色牢度仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM106、TM107、TM163 - 汗渍测试仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM26、TM106、TM107- 传统实验室对流干燥箱 SDL Atlas 高级测试仪器 TM016.1、TM16.2、TM16.3 - 由接近于零透光率的材料制成的测试罩,适用于多种曝光等级,如 10、20、40 等。 AFU Testfabrics, Inc. Q-Lab Corporation 高级测试仪器 TM016.1、TM16.2、TM16.3-卡片纸:163 g/m2 (90磅)一层,白色布里斯托指数 SDL Atlas Testfabrics, Inc. 先进测试仪器 TM016.1-日光曝光柜 Q-Lab Corporation 先进测试仪器 TM016.2、TM16.3、TM111、TM186-黑板温度计 Q-Lab Corporation 先进测试仪器 TM016.2-封闭式碳弧灯 先进测试仪器 TM016.3-黑色标准温度计 Q-Lab Corporation 先进测试仪器 TM020A - 刚性安装卡:非吸水纱线样品安装卡,用于环氧树脂安装方法 TM020A-1 加仑真空室,带泵,能够维持至少 25 英寸汞柱的真空压力。 TM020A-2 件式可铸造安装夹,1.5 英寸 TM020A-背胶砂轮,10 英寸(粒度:120、240、320、400、600、800、1200) TM020A-光纤切割器:由两个刀片、一个螺纹销和一个将刀片牢固固定到位的组件组成的装置。该装置通过垂直向下施加压力来操作。它可将纤维切割成大约 250 微米长 SDL Atlas TM020-差示扫描量热仪 TM020-微型 FTIR 仪器 TM023、TM164-暴露室,适用于容纳氮氧化物并维持恒定的高温和相对湿度 SDL Atlas TM026 - 蒸汽机,配有适当的控制装置,可实现均匀的蒸汽流量和温度 TM027 - 轧棉机(小型)或家用绞干机 SDL Atlas TM030-计数室适用于测定孢子浓度,例如血细胞计数器 TM061 - 预热器/储存模块高级测试仪器 TM061、TM86 - 不锈钢球 SDL Atlas Testfabrics, Inc.高级测试仪器 TM061-用于将罐固定在洗衣机轴上的适配器板 SDL Atlas 高级测试仪器 TM066 - 模板 (40 x 15mm) 高级测试仪器 TM066、TM76、TM84-调节和测试室 SDL Atlas 高级测试仪器 TM076 - 尺寸合适的矩形扁平金属表面,可用作电极
D.,Belmont Scientific 10:00休息10:15 Ram-Dent Trigger方法开发Vincent Glover,NASA,Johnson Space Center 10:45被动预防锂离子电池中的热失控和火灾繁殖Vijay V. Vijay V. V. V. Devarakonda,Devarakonda,Ph.D.,Ph.D. Energy Cells Eric Darcy, NASA, Johnson Space Center 11:45 Lunch 1:30 Investigation of Electrically Conductive Aqueous Solutions for De-Energizing Lithium-Ion Batteries Alex Di Sciullo Jones, R&D Engineer, UL Solutions 2:00 GS Yuasa Generation 4 Li-Ion Cell and Battery Performance Update Tom Pusateri, GS Yuasa Lithium Power 2:30 Nanostructured Germanium thin fills as航空航天应用锂离子电池的阳极材料Valentina Diolaiti,A。Andreoli,G。Mangherini,D。Vincenzi,Ferrara大学物理与地球科学系; S. Chauque,M。Ricci,R.Z。Proietti,意大利技术研究所3:00休息3:15关于NASA应用的AL 4 AH零电压稳定性的研究Linhua(Steven)Hu,Ph.D。,Jiang Fan,Jiang Fan,Ph.D。 4:15使用热量表Surendra K. Singh博士,Belmont Scientific 4:45灵活需求太空站功能系统功能和特征Mark Miner,P.E.,P.E。,P.E.
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且
