帕金森氏病(PD)是一种毁灭性的运动,在全球流行率上加速了,但是缺乏精确的症状测量使得有效疗法的发展具有挑战性。统一的帕金森统一级评级量表(UPDRS)是评估运动症状严重程度的黄金标准,但其手动评分标准含糊不清,既模糊又主观,导致了粗糙和嘈杂的临床评估。机器学习方法有可能通过使PD症状评估现代化,以使其更具定量,客观和可扩展性。但是,缺乏用于PD运动考试的基准视频数据集阻碍了模型开发。在这里,我们介绍了郁金香数据集以弥合此差距。Tulip强调预先挑剔和全面性,包括25种UPDRS运动考试活动的多视频记录(6张摄像机),以及3位临床专家的评级,在帕金森氏症患者和健康对照组中。多视图记录实现了身体运动的3D重建,该重建更好地捕获疾病特征,而不是更多的调用2D方法。使用数据集,我们建立了一个基本线模型,用于预测3D姿势的UPDRS分数,以说明如何自动化现有诊断。展望未来,郁金香可以帮助开发超过UPDRS分数的新的精确诊断,从而深入了解PD及其潜在治疗方法。
视野是指通过摄像头镜头可以看到的区域。它直接反映出远程加入的参与者可以看到多少会议空间。180 度的视野让桌子上的每个人都清晰可见,即使是靠近摄像头或坐在房间边缘的人。
检测器是带有集成摄像机的双重元素运动。当它检测到运动时,将警报信号和图像发送到控制中心。检测器配备了可配置的设置,可以根据周围环境进行调整,以避免误报并在外部提供最佳性能。
微型和轻型摄像头的设计需要光学设计突破才能实现良好的光学性能。受动物眼睛启发的解决方案是最有前途的。视网膜的曲率具有多种优势,例如均匀的强度和没有场曲率,但不使用此功能。此处介绍的工作是球形弯曲整体IR探测器的解决方案。与最先进的方法相比,获得了更高的填充因子,并且没有修改设备制造过程。我们制作了一个带有单个镜头和弯曲的红外镜头的红外摄像头。捕获的图像已经解决良好,并且具有良好的对比度,并且在与平面系统进行比较时,调制传输功能显示出更好的质量。
摘要目的:这项研究的主要目的是评估大型现场镉泰特脲(CZT)摄像机在单个photon发射计算机断层扫描(SPECT)图像(SPECT)图像上估计甲状腺摄取(TU)的能力,而与平面相比,与平面校正相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,这是一系列23个对定对不到的。次要目标是确定示踪剂给药的辐射剂量和其他计算机断层扫描(CT)扫描。方法:使用甲状腺幻影,用于平面,Tomo-AC和Tomo-NoAC图像确定跨校准因子。然后,在5个拟人化幻像上进行以甲状腺为中心的平面和SPECT/CT,活性在0.4至10 MBQ上进行,在服用79.2±3.7 MBQ后[99m TC] TC] - 特雷切酸酯的23例患者。我们估计拟人化幻象的绝对甲状腺活性(ATHA)和患者的TU。辐射剂量还使用国际放射学保护委员会(ICRP)报告和VirtualDose TM CT软件确定。结果:对于Planar,Tomo-AC和Tomo-NoAC图像,跨校准因子分别为66.2±4.9、60.7±0.7和26.5±0.3计数/(MBQ S)。对平面,Tomo-AC和Tomo-NoAC图像的理论和估计的ATHA在统计上高度相关(r <0.99; p <10 –4),理论ATHA和估计的ATHA之间的相对百分比差异为(8.6±17.8)(8.6±17.8),(8.6±17.8),(-1.3±5.2)和(-1.3±5.2)和(12.8±5.7±5.7)%,相应相差。有效和您的ROID吸收剂量分别为(0.34 ct + 0.95 nm)MSV和(3.88 ct + 1.74 nm)MGY。基于不同图像对(平面与Tomo-Ac,Planar vs Tomo-Noac和Tomo-Ac vs Tomo-Noac)之间的TU进行比较显示出统计学上很重要的相关性(r = 0.972、0.961和0.961和0.935; p <10 –3)。结论:在新一代CZT大型摄像机上使用平面和SPECT/CT获取的ATAS估计是可行的。此外,在Spect/ct
摘要。半自主车需要监视驾驶员检查他是否正在监督系统和/或准备接管。大多数汽车都依靠方向盘传感器来检测手,并且不监视驾驶员可能执行的非驾驶相关任务。我们提出了一个带有多个分支体系结构的基于摄像头的系统,该系统在代表次要任务和平板电脑位置的平板电脑上提供了方向盘上的手数。它还解决了其他基于摄像头系统的常见问题:转向轮前的自由手可以归类为抓住它。此外,我们的系统处理驾驶员可能在方向盘上使用平板电脑的情况,因为他可以在自主模式下进行。这两个点对于评估驾驶员需要接管的时间至关重要。最后,将方向盘和相机系统都结合在一起也将使车辆更难欺骗,因此更安全。视频可用:https://www.youtube.com/watch?v=qfyom4sdwr4
Sylvain Leblond,Pascal Fichet,LaumonierRémi,Sophie Billon,Paul Sardini等。开发用于拆卸应用的紧凑型Alpha和Beta摄像头。放射分析和核化学杂志,2022,331,pp.1075-1089。10.1007/S10967-021-08172-2。CEA-03939255
尺寸(图 3)(七个 ROI)。与使用掩蔽的方法相比,该方法可以通过最小化不属于皮肤的像素数量来优化信噪比,而使用掩蔽的方法在某些条件下是近似的。我们选择空间 L * u * v 的色度分量 * u 来形成 PPG 信号。*u 分量代表红色和绿色之间的颜色,v* 代表黄色和蓝色之间的颜色。根据血红蛋白吸收率最好的波长范围,通过分析色度 *u 更容易观察到光电容积描记变化(我们选择此颜色空间的原因)。将为捕获的每个帧计算空间平均值,从而在我们的 PPG 信号中形成一个点。对于 N 个捕获的帧,将形成 N 个点的信号。对每个 ROI 进行此空间平均,为每个 ROI 创建一个 PPG 信号:在我们的例子中,我们将有七个 PPG 信号。当整个表面未被均匀照亮时,可获得最佳质量的信号:当其他区域的信号很少或没有可用信号时,其中一个区域可能具有非常好的信号。
的确,与上述标准有关,未冷却的重测技术是THZ 2D成像的有前途的候选人。它在室温下运行,阵列在硅微电子铸造厂的高级CMOS应用特定集成电路(ASIC)上方生产,紧凑的单层大型2D阵列 - 现在以连续降低价格在工业上生产Mpixel格式。作者组[3]用Leti-Ulis专有的非定形 - 硅螺旋体传感器测试了此成像设置配置[4]。用量子级联激光器(QCL)在3 THz下的测量显示出小于0.5%的光吸收效率。即使这种敏感性足以进行测试过的活动THZ成像设置,这些结果也促使研究了BOLOMETER PISERETURTER的研究,专门调整了对THZ辐射的感觉,以便遵守现实生活中的用户库。
超低功耗图像传感器,专为始终开启的视觉设备和应用而设计 高灵敏度 3.6μ BrightSense(TM) 像素技术 324 x 324 有效像素分辨率,支持 QVGA 窗口、垂直翻转和水平镜像读出 30FPS 时 <1.1mW QQVGA 分辨率,30FPS 时 < 2mW QVGA 分辨率 可编程黑电平校准目标、帧大小、帧速率、曝光、模拟增益(高达 8 倍)和数字增益(高达 4 倍) 自动曝光和增益控制环路,支持 50Hz/60Hz 闪烁避免 灵活的 1 位、4 位和 8 位视频数据接口,具有视频帧和行同步 具有可编程 ROI 和检测阈值的运动检测电路,具有数字输出作为中断 片上自振荡器 用于寄存器访问的 I2C 2 线串行接口 CSP 和裸片传感器封装选项 高 CRA,适用于小型模块设计