由于脑电信号不易伪装且蕴含着丰富的神经生理信息,在客观情绪识别方面表现出显著的优势,基于脑电信号的情绪识别成为脑机接口领域的热门研究领域。然而,脑电信号一般具有非平稳性且信噪比较低,难以分析。受探索判别子空间表示通常有助于捕捉脑电数据语义信息的启发,本文提出了一种图自适应半监督判别子空间学习(GASDSL)模型用于基于脑电信号的情绪识别。GASDSL旨在探索一个判别子空间,其中类内散度减小而类间可分性增加。采用自适应最大熵图构建和半监督子空间情绪状态预测来调解判别子空间学习。对 SEED-IV 和 SEED-V 数据集进行的大量比较研究表明:1)与其他半监督学习模型相比,GASDSL 实现了令人满意的情绪识别准确率;2)随着模型的迭代,学习到的最大熵图和子空间的判别能力都得到了提高;3)根据空间频率模式分析结果,从 Gamma 波段、左/右颞叶、前额叶和(中央)顶叶提取的特征对情绪识别贡献更大。2023 作者。由 Elsevier BV 代表沙特国王大学出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
现有的大多数声学超材料依赖于具有固定配置的架构结构,因此,一旦结构制成,其属性就无法进行调制。新兴的主动声学超材料为按需切换属性状态提供了有希望的机会;然而,它们通常需要束缚负载,例如机械压缩或气动驱动。使用不受束缚的物理刺激来主动切换声学超材料的属性状态仍未得到很大程度上的探索。在这里,受鲨鱼皮小齿的启发,我们提出了一类主动声学超材料,其配置可以通过不受束缚的磁场按需切换,从而实现声学传输、波导、逻辑运算和互易性的主动切换。关键机制依赖于磁可变形米氏谐振器柱 (MRP) 阵列,这些阵列可以在垂直和弯曲状态之间调整,分别对应于声学禁止和传导。 MRP 由磁活性弹性体制成,具有波浪形空气通道,可在设计的频率范围内实现人工米氏共振。米氏共振会诱发声学带隙,当柱子被足够大的磁场选择性弯曲时,声学带隙会闭合。这些磁活性 MRP 还可用于设计刺激控制的可重构声学开关、逻辑门和二极管。本范例能够创建第一代不受束缚的刺激诱导的主动声学元设备,可能具有广泛的工程应用,包括从噪声控制和音频调制到声波伪装。
传感技术的进步可以从制造系统中收集有效的数据来监视和控制。此外,随着物联网(IoT)和信息技术的快速发展,越来越多的制造系统变得启用了网络,从而有助于实时数据共享和信息交流,从而显着提高了制造系统的功能和效率。但是,支持网络的环境可能会在数据和信息共享过程中构成具有网络物理攻击风险高的传感器数据。指定的是,网络物理攻击可以针对制造过程和/或数据传输过程,以使传感器数据恶意篡改传感器数据,从而导致错误警报或监测中异常检测的失败。此外,网络物理攻击也可以在无授权的情况下实现非法数据访问并导致关键产品/过程信息的泄漏。因此,开发一种有效的方法来保护数据免受这些攻击的影响至关重要,以便可以在支持网络的环境中确保制造系统的网络物理安全性。为了实现这一目标,本文提出了一种综合区块链启用的数据保护方法,该方法利用了凸轮的不对称加密。提出了一项现实世界中的案例研究,该案例研究介绍了添加剂制造中收集的传感器数据的网络物理安全性,以证明该方法的有效性。[doi:10.1115/1.4063859]结果表明,可以在相对较短的时间内检测到恶意篡改(小于0.05 ms),并且未经授权的数据访问的风险也大大降低。
由于人类计算机相互作用的迅速发展,近年来,情感计算引起了越来越多的关注。在情绪识别中,脑电图(EEG)信号比其他生理实验更容易记录,并且不容易被伪装。由于脑电图数据的高维质和人类情绪的多样性,因此很难提取有效的脑电图并识别情绪模式。本文提出了一个多功能深森林(MFDF)模型,以识别人类的情绪。首先将EEG信号分为几个EEG频带,然后从每个频带中提取功率谱密度(PSD)和差分熵(DE),将原始信号作为特征提取。五个级别的情感模型用于标记五个情绪,包括中性,愤怒,悲伤,快乐和愉快。具有原始特征或尺寸减少了输入的特征,深层森林是为了对五个情绪进行分类的构建。这些实验是在公共数据集上进行的,用于使用生理信号(DEAP)进行情绪分析。将实验结果与传统的分类器进行了比较,包括K最近的邻居(KNN),随机森林(RF)和支持向量机(SVM)。MFDF的平均识别精度为71.05%,比RF,KNN和SVM高3.40%,8.54%和19.53%。此外,降低尺寸和原始脑电图信号后具有特征输入的精度分别仅为51.30和26.71%。这项研究的结果表明,该方法可以有效地有助于基于脑电图的情绪分类任务。
广泛接受的是,癌症主要是由环境因素触发的随机自发突变引起的。我们的理论挑战了随机躯体突变理论(SMT)的观念。SMT与查尔斯·达尔文(Charles Darwin)的进化理论不太适合,因为相对较少的突变会如此频繁,并且这些突变会导致死亡而不是预测的生存。但是,如果我们要从病原体的有利位置及其支持的微生物群落来殖民人类并突变宿主细胞以使其自己的好处,因为它确实使他们具有进化优势,并且可以选择基因并将自己的DNA插入宿主插入宿主。在本文中,我们提供了证据,表明肿瘤实际上是由居住在硬基质包裹的生物膜中的各种微生物组成的复杂的微生物群落。这些微生物是导致癌症和控制血管生成的遗传突变的原因。这些病原体通过隐藏在肿瘤细胞,M2或M2样巨噬细胞以及其他吞噬免疫细胞中,并在其内部传播到由血小板摄入的远处,它们也会重新编程,并准备转移的位点,以进行转移。癌症的危险因素是病原体能够利用的能源的来源。这是根据我们以前的统一疾病理论,病原体利用黑色素来建造和维持肿瘤和转移。我们提出了我们对癌症的理解的范式转变,从而为治疗和预防途径提供了不同的轨迹。