摘要 韦伯-费希纳定律认为,我们感知到的感觉输入会随着物理输入以对数方式增加。海马“时间细胞”在触发刺激后的一段有限时间内依次放电,记录最近的经验。不同的细胞在不同的延迟下具有“时间场”,延迟时间至少可达数十秒。过去的研究表明,时间细胞代表了一条压缩的时间线,因为延迟后期放电的时间细胞较少,时间场较宽。本文探讨时间细胞的压缩是否遵循韦伯-费希纳定律。使用分层贝叶斯模型研究了时间细胞,该模型同时考虑了试验水平、细胞水平和群体水平的放电模式。该程序允许分别估计试验内感受野宽度和试验间变异性。分离试验间变异性后,时间场宽度随延迟线性增加。此外,时间细胞群体沿对数时间轴均匀分布。这些发现提供了强有力的定量证据,表明啮齿动物海马中的神经时间表征具有对数压缩性,并且遵循神经韦伯-费希纳定律。
摘要 — 本研究提出了一种脉冲神经网络,用于根据神经数据预测运动学,从而实现准确且节能的脑机接口。脑机接口是一种解释神经信号的技术系统,可让运动障碍患者控制假肢。脉冲神经网络具有低功耗和与生物神经结构非常相似的特点,因此有可能改进脑机接口技术。本研究中的 SNN 使用泄漏积分和激发模型来模拟神经元的行为,并使用局部学习方法进行学习,该方法使用替代梯度来学习网络参数。该网络实现了一种新颖的连续时间输出编码方案,允许基于回归的学习。SNN 是在从灵长类动物运动前皮层和大鼠海马记录的神经和运动数据上进行离线训练和测试的。该模型通过寻找预测运动数据与真实运动数据之间的相关性来评估,运动前皮层记录的峰值皮尔逊相关系数达到 0.77,海马体记录的峰值皮尔逊相关系数达到 0.80。该模型的准确性与卡尔曼滤波解码器和 LSTM 网络以及使用反向传播训练的脉冲神经网络进行了对比,以比较局部学习的效果。
摘要 局部场电位 (LFP) 的偏转和振荡定义了海马尖波涟漪 (SWR),这是大脑最同步的事件之一。SWR 反映了从认知相关的神经元集合中出现的放电和突触电流序列。虽然频谱分析已经取得了进展,但超密集记录的激增现在需要新的自动检测策略。在这里,我们展示了如何在高密度 LFP 海马记录上运行的一维卷积网络如何自动识别来自啮齿动物海马的 SWR。当无需重新训练就应用于新数据集和超密集海马范围的记录时,我们发现了与 SWR 出现相关的生理相关过程,从而促使制定新的分类标准。为了获得可解释性,我们开发了一种方法来查询人工网络的运行。我们发现它依赖于基于特征的专业化,这允许识别空间分离的振荡和偏转,以及重放典型的同步群体放电。因此,使用基于深度学习的方法可能会改变当前的启发式方法,以便更好地机械地解释这些相关的神经生理事件。
牛津经济研究院总部位于英国牛津,在纽约、伦敦、法兰克福和新加坡设有地区中心,并在贝尔法斯特、波士顿、开普敦、芝加哥、迪拜、都柏林、香港、洛杉矶、墨尔本、墨西哥城、米兰、巴黎、费城、斯德哥尔摩、悉尼、东京和多伦多设有办事处。我们拥有 450 名全职员工,其中包括 300 多名专业经济学家、行业专家和商业编辑,是规模最大的宏观经济学家和思想领导专家团队之一。我们的全球团队精通各种研究技术和思想领导能力,从计量经济学建模、情景框架和经济影响分析到市场调查、案例研究、专家小组和网络分析。
摘要 海马由沿隔颞轴重复的刻板神经元回路组成。该横向回路包含具有刻板连接的不同子区,支持关键的认知过程,包括情景记忆和空间记忆。然而,现有技术无法对体内横向海马回路进行全面测量。在这里,我们开发了一种通过植入玻璃微潜望镜对清醒小鼠的横向海马平面进行双光子成像的方法,允许光学访问主要的海马子区和锥体神经元的树突树突。使用这种方法,我们追踪了 CA1 顶端树突的树突形态动态并描述了树突棘周转。然后我们使用钙成像来量化位置和速度细胞在子区中的普遍性。最后,我们测量了空间信息的解剖分布,发现空间选择性沿 DG 到 CA1 轴分布不均匀。这种方法扩展了现有的海马回路结构和功能测量工具箱。
• 与客户和 CV 销售办公室联系,就数字渠道和渠道开发进行一般咨询 • - 回复和处理来自世界各地的客户和 CV 办公室有关数字渠道的各种问题/咨询 • - 在报告问题(登录或创建帐户)时提供 1 级支持,并在需要时升级到服务台 • - 识别渠道开发的机会(例如技术、用户体验和客户) • - 以程序/文档/知识库的形式正式化调查结果 • 支持数字销售团队逐步改进其产品 • - 收集、分析和正式化来自各个利益相关者的反馈,以提出产品改进建议(用户体验、新功能、问题……) • - 用简洁明了的用户故事来补充产品待办事项 • - 在将新功能部署到生产之前,支持用户验收测试(UAT)
叶。在本章中,我们将讨论在计算机模型中重建啮齿动物海马的方法。由于海马结构在哺乳动物中大多得以保留,因此一些见解可能不仅限于啮齿动物。在啮齿动物中,海马体是位于新皮质正下方的显著结构。当我们说海马体时,我们指的是四个亚区域:齿状回 (DG)、海马角 1、2 和 3 (CA1、CA2 和 CA3)。一些作者使用术语海马体仅指 CA1、CA2 和 CA3。最后,对于术语海马体形成,我们还包括下托、前下托、副下托和内嗅皮质。海马体在多种认知功能中发挥着重要作用,例如学习和记忆(Jarrard 1993)和空间导航(O'Keefe and Nadel 1978)。海马体也与某些病理有关。例如,在阿尔茨海默病中,海马体似乎在疾病扩散到整个大脑之前的早期阶段就受到影响。在癫痫中,颞叶通常是癫痫发作的焦点,因为与其他皮质区域相比,海马体需要的电流要少得多,才能引发癫痫样活动。此外,海马体,特别是 CA1,极易受到缺血或缺氧损伤,这使得该区域在脑血管疾病中至关重要。海马体因其特殊的结构和特性而促成了许多发现。首先,它具有相对简单有序的结构,共有四层,其中兴奋性细胞仅占据一层。不同的海马区几乎单向连接,长距离纤维与锥体细胞的主要树突轴正交传播。此外,突触具有高度的可塑性,因此它们可以根据突触前和突触后细胞的行为改变其强度。最后,神经元可以在培养物中生长,并且急性或培养的切片可以在体外存活足够长的时间以用于实验。所有这些特性使海马体成为了解大脑一般原理的便捷基准。受益于海马体实验的关键发现
7KHWD VFDOH FRRUGLQDWLRQ RI SUHOLPELF PHGLDO SUHIURQWDO FRUWH[ P3)& ORFDO ILHOG ϲϰ SRWHQWLDOV /)3V DQG LWV LQIOXHQFH YLD GLUHFW RU LQGLUHFW SURMHFWLRQV WR WKH YHQWUDO ϲϱ KLSSRFDPSXV Y+& DQG GRUVDO KLSSRFDPSXV G+& GXULQJ VSDWLDO OHDUQLQJ UHPDLQV ϲϲ SRRUO\ XQGHUVWRRG :HK\SRWKHVL]HG WKDW WKHWD IUHTXHQF\ FRRUGLQDWLRQ G\QDPLFV ZLWKLQ ϲϳ DQG EHWZHHQ WKH P3)& G+& DQG Y+& ZRXOG EH SUHGHWHUPLQHG E\ WKH OHYHO RI ϲϴ FRQQHFWLYLW\ UDWKHU WKDQ UHIOHFWLQJ GLIIHULQJ FLUFXLW WKURXJKSXW UHODWLRQVKLSV GHSHQGLQJ RQ ϲϵ FRJQLWLYH GHPDQGV 0RUHRYHU ZH K\SRWKHVL]HG WKDW FRKHUHQFH OHYHOV ZRXOG QRW FKDQJH ϳϬ GXULQJ OHDUQLQJ RI D FRPSOH[ VSDWLDO DYRLGDQFH WDVN $GXOW PDOH UDWV ZHUH ELODWHUDOO\ ϳϭ LPSODQWHG ZLWK ((* HOHFWURGHV DQG /)3V UHFRUGHG LQ HDFK VWUXFWXUH &RQWUDU\ WR ϳϮ SUHGLFWLRQV WKHWD FRKHUHQFH DYHUDJHG DFURVV µ(DUO\¶ RU µ/DWH¶ WUDLQLQJ VHVVLRQV LQ WKH ϳϯ P3)& +& P3)& P3)& DQG +& +& LQFUHDVHG DV D IXQFWLRQ RI WDVN OHDUQLQJ ϳϰ &RKHUHQFH OHYHOV ZHUH DOVR KLJKHVW EHWZHHQ WKH LQGLUHFWO\ FRQQHFWHG P3)& G+& ϳϱ FLUFXLW SDUWLFXODUO\ GXULQJ HDUO\ WUDLQLQJ $OWKRXJK P3)& SRVW DFTXLVLWLRQ FRKHUHQFH ϳϲ UHPDLQHG KLJKHU ZLWK G+& WKDQ Y+& G\QDPLF P3)& FRKHUHQFH SDWWHUQV ZLWK ERWK ϳϳ KLSSRFDPSDO SROHV DFURVV DYRLGDQFH HSRFKV ZHUH VLPLODU ,Q WKH VHF SULRU WR ϳϴ DYRLGDQFH D UHJLRQDO WHPSRUDO VHTXHQFH RI WUDQVLWRU\ FRKHUHQFH SHDNV HPHUJHG ϳϵ EHWZHHQ WKH P3)& P3)& WKH P3)& +& DQG WKHQ G+& G+& 'XULQJ WKLV VHTXHQFH ϴϬ FRKHUHQFH ZLWKLQ WKHWD EDQGZLGWK IOXFWXDWHG EHWZHHQ HSRFKV DW GLVWLQFW VXE ϴϭ IUHTXHQFLHV VXJJHVWLQJ IUHTXHQF\ VSHFLILF UROHV IRU WKH SURSDJDWLRQ RI WDVN UHOHYDQW ϴϮ SURFHVVLQJ 2Q D VHF WLPHVFDOH FRKHUHQFH IUHTXHQF\ ZLWKLQ DQG EHWZHHQ WKH P3)& ϴϯ DQG KLSSRFDPSDO VHSWRWHPSRUDO D[LV FKDQJH DV D IXQFWLRQ RI DYRLGDQFH OHDUQLQJ DQG ϴϰ FRJQLWLYH GHPDQG 7KH UHVXOWV VXSSRUW D UROH IRU WKHWD FRKHUHQFH VXE EDQGZLGWKV DQG ϴϱ VSHFLILFDOO\ DQ +] P3)& WKHWD VLJQDO IRU JHQHUDWLQJ DQG SURFHVVLQJ TXDOLWDWLYHO\ ϴϲ GLIIHUHQW W\SHV RI LQIRUPDWLRQ LQ WKH RUJDQL]DWLRQ RI VSDWLDO DYRLGDQFH EHKDYLRU LQ WKH 细细 P3)& +& FLUFXLW 细细
指南中提供了更详细的步骤,或者您可以在线搜索如何关闭设备的 Mac 地址随机化。在注册 Windows 设备之前,请确保您已安装最新的 Windows 更新。您还需要最新的防病毒应用程序(您喜欢的任何防病毒软件)。登录 eduRoam 时,请确保使用您的完整电子邮件地址作为用户名。如果您的用户名自动完成,请查看用户名的最后一个字符后没有空格。