此政策适用于您吗?如果您是 Three Business 客户,则此政策适用。Three 的退货、换货和取消政策我们始终希望您对所获得的服务和任何新购买感到满意,但如果您不满意,我们在下面列出了您可以改变主意的情况,包括退货或换货和设备。这取决于您购买了什么、在哪里下订单以及您是直接从 Three 还是其他零售商处购买。“退货期”是指在允许的情况下,您必须取消协议和/或退回设备的天数,如本退货政策中所述。
带宽和噪声是所有通信和信号处理系统中的基本考虑。光学纤维的组速度分散在其频率响应中产生零,从而限制了带宽,从而限制了通信和信号处理系统的时间响应。强度噪声通常是数据通信中半导体激光器的主要光学噪声源。在本文中,我们提出并演示了一类电容调节剂,能够缓解这两个问题。调制器,用薄膜锂锂制造,同时达到相位多样性和差异操作。前者弥补了纤维的分散性惩罚,而后者克服了强度噪声和其他常见模式弹性。在时间拉伸数据采集和光学通信中,所谓的四相电型调制器的应用。
CN 330289 MGLLHY03C64Z602T MAGLIANO RODRIGUES LETHYCIA PEC 撤销 LETHYCIAMAGLIANORODRIGUES@PEC.IT
摘要。量子随机数发生器(QRNG)可以通过利用量子力学的固有概率性质来提供真正的随机性,量子力学在许多应用中起着重要作用。但是,真正的随机性获取可能会受到所涉及的不受信任设备的攻击,或者它们与现实生活实施中理论建模的偏差。我们提出并在实验上演示了独立于源设备的QRNG,该QRNG使人们能够使用不信任的源设备访问真实的随机位。随机位是通过测量时间的任何一个光子的到达时间 - 通过自发参数下调产生的能量纠缠的光子对的到达时间,在此通过观察非局部分散剂取消来证明纠缠。在实验中,我们通过改进的熵不确定性关系提取4 Mbps的生成速率,可以通过使用高级单光子检测器将其改进到每秒千兆位。我们的方法为QRNG提供了有前途的候选人,而实际上没有表征或容易出错的源设备。
生物测量通常受到大量非平稳噪声的污染,需要有效的降噪技术。我们提出了一种新的实时深度学习算法,该算法可以自适应地产生与噪声相反的信号,从而发生破坏性干扰。作为概念验证,我们通过使用定制的、灵活的、3D 打印的复合电极降低脑电图中的肌电图噪声来展示该算法的性能。使用此设置,通过消除宽带肌肉噪声,EEG 的信噪比平均提高了 4dB,最高提高了 10dB。这一概念不仅可以自适应地提高 EEG 的信噪比,还可以应用于广泛的生物、工业和消费者应用,例如工业传感或降噪耳机。
如图 4b 所示,所提出的结构可以在 3.58 GHz 和 4.75 GHz 处创建两个传输零点。这些传输零点可以在 WPD 设计中抑制更多谐波。所提出的谐振器主要尺寸如下:d4 = 2.4、d5 = 1.4、d6 = 0.5、d7 = 1.2、d8 = 0.9、d9 = 0.1、d10 = 2.8、d11 = 0.11、W3 = 0.1、W5 = 2.1、W6 = 0.1、W7 = 0.1、W8 = 2.6、S3 = 0.1、S4 = 0.3、S5 = 0.2、S6 = 0.2、S7 = 0.2(单位均为毫米)。表 2 列出了所提出的主谐振器的 LC 等效模型的计算值。在 (13) 中计算了设计的主谐振器的 TF。
本文介绍了一种用于捕获离子的量子实验中磁场噪声的前馈补偿系统。该补偿系统在两个实验装置中实现,一个用于量子模拟,另一个用于精密光谱学。在这两个实验中,量子比特都被编码在一对捕获的 40 Ca + 离子的电子能级中。补偿系统用于抑制实验室中由 50 Hz 电源线引起的环境磁场噪声。基于磁场线圈和函数发生器的前馈系统采用一种简单的技术方法,以产生调制磁场。前馈补偿系统的工作原理是施加异相磁场,以破坏性地叠加离子位置的磁场噪声。对于函数发生器,使用可编程的 RedPitaya 板。在这项工作中,为该板开发了一个控制软件,允许补偿系统快速运行。此外,还开发了一个实验序列,其中离子量子比特被用作量化磁场噪声的传感器。该实验依赖于 CPMG π 脉冲序列。