2008 年,我开始研究参与代谢调节的信号分子的作用机制,并发现氨基葡聚糖(一种葡聚糖)促进活性受体复合物的形成。2011 年,由于日本东部大地震,我的研究活动被迫停止。我的导师告诉我 RIKEN 的灾难受害者支持计划。我很幸运地被录取进入了这个项目,并加入了一个专门从事葡聚糖有机合成的实验室,继续我的研究工作 10 个月。在此期间,我与专门从事合成有机化学的化学家进行了多次讨论,我认识到从化学角度了解生物功能的好处。这让我有机会探索我之前一直在研究的分子生物学和细胞生物学方法,并将生物化学视角融入我对葡聚糖内在参与机制的研究中。
8 这些作者的贡献相同 *通信地址:yang_chen@bjcancer.org (YC);zhangli_pku@pku.edu.cn (LZ);shenlin@bjmu.edu.cn (LS);dongbin@math.pku.edu.cn (BD) 收稿日期:2023 年 7 月 24 日;接受日期:2023 年 8 月 8 日;在线发表日期:2023 年 8 月 14 日;https://doi.org/10.59717/j.xinn-med.2023.100019 © 2023 作者。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 (http://creativecommons.org/licenses/by-nc-nd/4.0/)。引用:Yuan J.、Bao P.、Chen Z. 等人,(2023)。高级提示作为催化剂:增强大型语言模型在胃肠道癌症管理中的作用。创新医学 1(2),100019。大型语言模型 (LLM) 在医疗保健方面的表现可能会受到提示工程的显著影响。然而,到目前为止,该研究领域在胃肠道肿瘤学中仍然相对未知。我们的研究深入探讨了这个尚未探索的领域,调查了各种提示策略的有效性,包括简单提示、模板提示、情境学习 (ICL) 和多轮迭代提问,以优化 LLM 在医疗环境中的表现。我们开发了一个全面的评估系统来评估 LLM 在多个维度上的表现。这个强大的评估系统确保对 LLM 在医学领域的能力进行全面评估。我们的研究结果表明,提示的全面性与 LLM 的表现之间存在正相关关系。值得注意的是,以反复问答为特征的多轮策略始终能产生最佳效果。ICL 是一种利用相互关联的情境学习的策略,也显示出巨大的潜力,超越了使用更简单的提示所取得的成果。这项研究强调了高级提示工程和迭代学习方法在提高 LLM 在医疗保健领域的适用性方面的潜力。我们建议进行更多研究以完善这些策略并研究它们的潜在整合,以真正发挥 LLM 在医学应用中的全部潜力。
虽然大规模功能性基因筛选已经发现了许多癌症依赖性,但罕见癌症在这些努力中表现不佳,而且许多罕见癌症的依赖性状况仍然不清楚。我们对一种典型的罕见癌症——TFE3- 易位肾细胞癌 (tRCC) 进行了基因组规模的 CRISPR 敲除筛选,揭示了与线粒体生物合成、氧化代谢和肾脏谱系特化相关的途径中以前未知的 tRCC 选择性依赖性。为了推广到其他可能不易获得实验模型的罕见癌症,我们采用机器学习根据肿瘤或细胞系的转录谱推断其基因依赖性。通过将依赖性预测应用于肺泡软组织肉瘤 (ASPS),一种也是由 TFE3 易位驱动的独特罕见癌症,我们发现并验证了 MCL1 代表 ASPS 中的依赖性,但不代表 tRCC。 24 最后,我们应用我们的模型预测了 TCGA 中的肿瘤(11,373 个肿瘤;28 25 个谱系)和多种其他罕见癌症(16 种类型的 958 个肿瘤,包括 26 种肾癌的 13 种不同亚型)中的基因依赖性,从而确定了几种特征不明显的癌症类型中可能存在的潜在可操作漏洞。27 我们的研究结果将无偏功能性基因筛查与预测模型结合起来,建立了 28 种癌症候选漏洞的概况,包括几种目前缺乏潜在靶点的罕见癌症。29
• 新兴临床和临床前机制数据表明,与肺癌相比,KRAS 突变型结直肠癌 (CRC) 对突变型选择性 KRAS 抑制剂的敏感性较低。 • 这种差异归因于 CRC 中更高的基底受体酪氨酸激酶 (RTK) 活性和频繁的致癌基因共突变。 • 泛 RAS 抑制剂(例如 RMC-6236)也在 CRC 中进行临床研究,但目前尚不清楚它们的疗效是否会受到类似谱系特异性因素的限制,因为泛 RAS 抑制应能阻止通过野生型 RAS 的信号传导重新激活。 • 我们之前已经表明,法呢基转移酶抑制剂 (FTI) 通过阻断 RHEB 对 mTOR 的激活,使肿瘤对靶向药物(例如 PI3Kα 和突变型选择性 KRAS 抑制剂)敏感。 • 我们假设 RTK 介导的 PI3K-AKT-mTOR 信号传导的重新激活仍然是 CRC 中泛 RAS 抑制剂的负担,并且 FTI KO-2806 将通过减弱这种适应性反应来增强 RMC-6236 在 RAS 抑制剂初治和预处理环境中的活性。
简单摘要:本研究旨在使用治疗前 MRI 图像来开发和验证用于预测多形性胶质母细胞瘤 (GBM) 患者总生存期 (OS) 的放射组学模型。使用来自多个机构的 289 名患者的回顾性数据集从每个患者的肿瘤体积中提取 660 个放射组学特征 (RF)。通过结合临床变量增强了初始模型,并通过重复三重交叉验证进行了验证。最终的临床-放射组学模型利用原发性大体肿瘤体积 (GTV) 和 T2-FLAIR MRI 模态,并包括年龄变量和两个稳健的 RF。该模型在验证队列中实现了中等良好的判别性能(C 指数:0.69)和显着的患者分层(p = 7 × 10 − 5)。值得注意的是,训练后的模型在 11 个月时表现出文献中最高的综合曲线下面积 (iAUC)(0.81)。研究得出结论,经过验证的临床放射组学模型可以根据 OS 有效地将 GBM 患者分为低风险组和高风险组。未来的工作将侧重于整合基于深度学习的特征和标准化卷积滤波器,以改进 OS 预测。
新闻稿 赛诺菲、RadioMedix 和 Orano Med 宣布就针对罕见癌症的下一代放射性配体药物达成许可协议 法国巴黎和德克萨斯州休斯顿,2024 年 9 月 12 日。作为为罕见癌症患者开发创新治疗方法的努力的一部分,赛诺菲已与 RadioMedix, Inc. 达成独家许可协议,RadioMedix 是一家美国临床阶段生物技术公司,正在开发用于 PET 成像和靶向 α 疗法 (TAT) 的放射性药物,以针对癌症尚未满足的医疗需求,Orano Med 是一家法国临床阶段生物技术公司,是 Orano 集团的子公司,正在开发针对癌症的铅-212(212Pb)放射性配体疗法 (RLT)。赛诺菲、RadioMedix 和 Orano Med 之间的此次合作主要集中在后期项目 AlphaMedix TM ( 212 Pb-DOTAMTATE) 上,该项目目前正在评估其对患有不可切除或转移性、进展性生长抑素受体表达神经内分泌肿瘤 (NET) 的成年患者的治疗效果,这是一种罕见的癌症。AlphaMedix TM 是一种 TAT,由用铅-212 ( 212 Pb) 放射性标记的生长抑素受体靶向肽复合物组成,可作为体内 α 粒子发生器。
靶向PD-1 / PD-L1的免疫疗法(ProgramD细胞死亡蛋白1 / ProgramD死亡配体1轴对多种癌症疾病的治疗表现出良好的有效性,包括黑色素瘤,肺部不与小细胞或某些恶性肿瘤血液相关的肺部,例如Ashodgkin淋巴瘤[1-3]。cepentant,有些患者在用单克隆抗体(ACM或英语)抗PD-1(抗PD-1 MAB)治疗后反应不佳或复发[4],因此,了解这些免疫疗法的动作模式的重要性。普遍认为,抗PD-1 MAB在肿瘤微环境中具有靶向且受限的作用[4],它与CD8 +浸润TUMS TUM的结合[5],破坏了PD-1及其配体之间的相互作用[6],并诱导淋巴结的活化和延伸st cd8 + phopphocys Tcd8 + phocys fly + plififoration and flifforation and Flififation and Flififation and Flififoration and Flififoration and Flififoration and cd8 + phocys t cd8 + + + phocys t cd8 + + phocys tuf。然而,最近的结果表明,它也从肿瘤中更远程起作用[9,10]。因此,我们试图了解淋巴结的参与,这些淋巴结排出了肿瘤在抗PD-1 MAB的抗肿瘤活性中。
冲突和披露咨询或顾问角色:AbbVie、Amgen、Arcus、AZ、Bayer、Beigene、BerGenBio、Biocartis、BioInvent、Blueprint Medicines、Boehringer Ingelheim、Bristol Myers Squibb、Clovis、Daiichi Sankyo、Debiopharm、Eli Lilly、F-Star、Fishawack、Foundation Medicine、Genzyme、Gilead、GSK、Hutchmed、Illumina、Incyte、Ipsen、iTeos、Janssen、Merck Sharp and Dohme、Merck Serono、Merrimack、Mirati、Nykode Therapeutics、Novartis、Novocure、Pharma Mar、Promontory Therapeutics、Pfizer、Regeneron、Roche/Genentech、Sanofi、Seattle Genetics、Takeda;在公司组织的公开活动中进行演讲:AZ、勃林格殷格翰、百时美施贵宝、礼来、Foundation Medicine、葛兰素史克、Illumina、益普生、默克夏普和多姆、Mirati、诺华、辉瑞、罗氏/基因泰克、赛诺菲、武田;Galenica 董事会职位;演讲者和差旅费:阿斯利康、百时美施贵宝、Guardant Health、NanoString、辉瑞、罗氏、赛诺菲和武田 SC-US-77501 | 2024 年 9 月