甲型流感病毒(H3N2)鸡胚衍生 1 候选疫苗病毒,用于开发和生产 2025 年南半球流感季节使用的疫苗 抗原和基因分析由世卫组织全球流感监测和应对系统 (GISRS) 合作中心进行。除非另有说明,本表上公布的所有候选疫苗病毒均已通过双向血凝抑制 (HI) 试验。国家或地区控制机构批准每个国家使用的疫苗的成分和配方 2
开放存取本文采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可证,允许以任何媒体或格式进行任何非商业性使用、共享、分发和复制,只要您给予原作者及来源适当的信任、提供指向知识共享许可证的链接、并指明您是否修改了许可资料。根据此许可证,您无权共享源自本文或其中部分的改编资料。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出了允许的用途,您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
耐多药细菌病原体的迅速出现和蔓延要求开发出既高效又不会引起毒性或耐药性的抗菌剂。在此背景下,我们设计并合成了两亲性树枝状大分子作为抗菌候选药物。我们报道了由长疏水烷基链和叔胺封端的聚(酰胺胺)树枝状大分子组成的两亲性树枝状大分子AD1b对一组革兰氏阴性细菌(包括耐多药大肠杆菌和鲍曼不动杆菌)表现出的强效抗菌活性。AD1b 在体内表现出对抗耐药细菌感染的有效活性。机制研究表明,AD1b 靶向膜磷脂磷脂酰甘油 (PG) 和心磷脂 (CL),导致细菌膜和质子动力破坏、代谢紊乱、细胞成分泄漏,并最终导致细胞死亡。总之,特异性地与细菌膜中的 PG/CL 相互作用的 AD1b 支持使用小型两亲性树枝状聚合物作为针对耐药细菌病原体的有希望的策略并解决全球抗生素危机。
在狭窄的间隙半导体或半学中,当带隙能量小于电子孔结合能时,电子和孔之间的有吸引力的库仑力可以诱导激发剂绝缘体(EI)基态。图1A中说明了规范相图。EI相在半导体相(E G> 0)和半阶段(E G <0)之间出现。相对向EI状态的相变是电子孔对的Bose-Einstein凝结。如图1b所示,电子和孔之间的有吸引力的库仑力在EI阶段在费米水平上产生带隙。1960年代的开创性理论(Mott,1961; Jerome等,1967; Zittartz,1967; Halperin and Rice,1968)之后进行了更详细的理论著作,揭示了BCS-BEC交叉从半导体侧到相图(Bronold and Fehske,2006; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronord; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; 2008; Phan等人,2010年)。尽管有理论成就,但对EIS的实验研究仅限于诸如TM(SE,TE)之类的少数材料(Neuenschwander and Wachter,1990; Bucher等,1991; Wachter等,2004)。ei的性质(se,te)并非部分原因是由于其磁性。Tise 2表现出电荷密度波(Disalvo等,1976)。通过角度分辨光发射光谱(ARPES)研究了电荷密度波的起源(Pillo等,2000; Rossnagel等,2002; Qian等,2007; Zhao等,2007)。虽然在早期
我们提供了DFG资助的协作研究中心的一部分1454“元炎症和蜂窝编程”(https://www.sfb1454-metaflammation.de/)。元炎症是指在各种疾病的进展中起重要作用的低级慢性炎症。了解元爆发的分子机制对于确定新的治疗靶标至关重要。您的任务:•基于实验的生物信息,统计和基于机器学习的分析,•通过广泛的实验技术生成的数据,•开发这些分析的方法,软件工具和管道,•与项目合作伙伴的协作,•数据分析和诠释,••数据分析和诠释,介绍和在journals和Journals中的科学成果。•您的个人资料:•(生物 - )信息学,计算生物学,计算机科学,数学,物理学或相关领域的大学学位(硕士学位或同等学历);替代地,生命科学学位与数据科学的往绩相结合,•统计学,生物信息学和/或机器学习方面的深刻知识,•R或Python的编程技能,•对生命科学主题的兴趣,尤其是免疫学过程,尤其是•书面和口语的能力。•我们提供:•与该地区最大的雇主之一一起,一项多种多样,具有挑战性(VBL),•大学体育运动可用的许多选择,•灵活的工作时间和在家工作的能力,•根据TV-L PAY 13年级(75%)的报酬。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
这项试验是一项随机,安慰剂对照的双盲人类挑战研究,该研究是在积极接种RSV的健康成年人中进行的。每天口服一次治疗五天时,评估了S-337395的抗病毒功效和安全性。与安慰剂组相比,S-337395治疗组显示出病毒负荷的统计学显着降低,从而达到了主要终点。在S-337395的最高剂量组中,病毒载荷降低了88.94%(p <0.0001),并且临床症状评分的统计学显着改善。此外,S-337395通常是安全且容忍良好的,没有严重或严重的不良事件,并且不依赖剂量的不良事件发生率或严重性。没有由于不利事件而中止的参与者。
由Laia Josa-Culleré博士领导的药物发现与药物化学小组是一个年轻,充满活力和热情的研究小组,致力于制定针对癌症的创新化学策略。我们的小组是跨学科的,将化学和生物学方面的专业知识融合在一起。作为年轻的PI,Josa-Culleré博士将提供有关该项目,定期反馈和项目跟踪的学科的动手培训。我们还举行每周小组会议,以公开讨论不同团队成员的项目。我们的小组培养了致力于产生有影响力的科学成果并促进团队成员的专业和个人成长的勤奋,雄心勃勃,支持和尊重的环境。
作者贡献 CKH 和 GS 设计了研究并撰写了论文,其他所有作者也参与其中。CKH 进行了实验并分析了数据,GS 负责监督研究的整体执行。DT、VL、AG 在建立、培养、扩增和测试 PDAC 类器官系方面提供了技术援助。PS 进行并分析了实验并准备了图表。THB、DK、CUS 设计并执行了自动化药物筛选并为分析做出了贡献。CP、DL、KE、AS 提供了病理学/肿瘤学专业知识。LV、FR 建立了野生型胰腺类器官系。LG、DJS、NCT、HK 提供了生物信息学专业知识并为分析做出了贡献。SK、MDM、MKJ 提供了转移性 PDAC 类器官系的数据。JB、JS 为体内研究的设计、实验和分析做出了贡献。