通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
将介绍在Polimi开发的医学成像应用中开发的ASIC。sipms读数的整体闪烁体读数允许伽马射线的光谱和相互作用测量位置,这也可以在模拟通道中的主动增益控制机理,在较大的动态范围内。尤其是在迅速-gamma测量中应用剂量治疗中的剂量验证。新的Anna ASIC实现了一个集成的神经网络,该神经网络直接处理从检测器的模拟信号,朝着闪烁体中相互作用的伽马射线位置的芯片重建。
气候变化是公平问题。最富有的人口占全球排放量的一半以上,但气候变化的影响将影响最小。越来越多的认识是要使气候行动有效,公平,基于财富的排放不平等。的确,这样做不仅可以促进直接过渡到零零,而且会加速它。在本文中,我们应用了碳能力的概念来调查富人在气候变化文本中所扮演的角色,并探索有效且公平地减少其排放的机会。我们借鉴了一项针对英国家庭的全面,全国代表性的调查,并将其与被定义为英国最富有的人之一的个人进行了深入的访谈。我们的发现表明,除了基于高消费的排放外,富人与其他人口相比具有多种积极的碳能力。这些包括快速采用低碳技术,对气候变化的重要知识和认识的能力以及在其社会和专业网络之间发挥气候阳性影响的能力。但是,我们在富裕的参与者中也很少发现消费的动力,他们与生活方式的牺牲和失去幸福感相关联。在此基础上,我们阐明了富裕人士的催化影响,将低碳生活方式与幸福感相关联,并促进采用低碳技术可以支持净零净资产的排放权益。使用碳能力镜头强调了人们对气候变化的贡献,超出了其直接的征服行为,以及如何利用现有能力来获得积极影响。
这项研究重新评估了长期食品系统的功效,并通过当地技能开发和教育计划来研究小型农民能力,以增强干扰过程中的可持续食品可及性。土著和当地知识提供了有关本地资源管理和创新策略的指导,推进了当地的食品系统转型和适应能力。进行了定量调查,到达了47个肯尼亚县的1307个小型农民。卡方测试,线性回归和串扰用于分析技能发展,教育水平,农业实践,供应链中断,食品获取和技术技能转型之间的关系。调查结果表明,具有高等教育水平的家庭对供应链中断更具弹性,从而促进了当地的食物和市场获取的改善。这些结果强调了对整合土著和当地知识,教育和技能发展的政策的必要性,以加强本地粮食系统的转型和稳定性,最终减少对短期人道主义援助的依赖。
Amine Belhadi,Sachin S. Kamble,Venkatesh Mani,Charbel Jose Chiappetta Jabbour,Imane Benkhati。通过添加剂制造建筑供应链的弹性和效率:动态能力视图的一种偏见的观点。国际生产生产杂志,2022,249,20 p。 10.1016/j.ijpe.2022.108516。hal-04325568
摘要 - 本文提出了在高排水源电压下重复定位的SC应力下的商用硅卡比德(SIC)MOSFET设备的短路(SC)性能。研究了两种方案,以评估栅极源电压(V GS)去极化和SC持续时间(T SC)降低的影响。V GS去极化可提供功率密度的降低,并允许在短路持续时间t scmax的情况下保持安全的故障模式(FTO:失败)。结果表明,SIC MOSFET V GS去极化不会降低T SCMAX时的SC循环能力。但是,使用V GS去极化允许将近1000个周期@T SC = 10 µ s的IGBT鲁棒性水平接近IGBT鲁棒性水平。 SC测试期间芯片温度演变的模拟表明,降解归因于SC周期期间的连接温度(T J)的升高,这导致顶部Al诱导裂纹融合到厚氧化物中。
比萨大学,土木与工业工程系 - 航空航天部,意大利比萨 56122 lily.blondel@ing.unipi.it; alberto.sarritzu@ing.unipi.it; angelo.pasini@unipi.it b 米兰理工大学,航空航天、科学与技术系。 (DAER),20156 米兰,意大利 inigo.alforja@polimi.it; michelle.lavagna@polimi.it c 布伦瑞克工业大学,空间系统研究所,38106 布伦瑞克,德国 l.ayala-fernandez@tu-braunschweig.de d 布鲁塞尔自由大学,航空热力学系,1050 Bruxelles,比利时 riccardo.gelain@ulb.be ; patrick.hendrick@ulb.be 和 ONERA/DMPE,图卢兹大学,F-31410 Mauzac,法国 christopher.glaser@onera.fr;杰罗姆·安索因@onera.fr; Jouke.Hijlkema@onera.fr f 德累斯顿工业大学,航空工程学院,01062 德累斯顿,德国 Livia.Ordonjez-Valles@hs-bremen.de; martin.tajmar@tu-dresden.de g 不来梅应用技术学院,28199 不来梅,德国 Livia.Ordonjez-Valles@hs-bremen.de ; uapel@fbm.hs-bremen.de h 柏林工业大学,空间技术系,10587 柏林,德国 e.stoll@tu-berlin.de * 通讯作者
论文还展示了近期的突破性成果,展示了窄带高功率 DFB 源,以及半导体光放大器 (SOA) 增益芯片的初步结果。此外,论文还强调,BluGlass 已成功展示了集成 GaN 主振荡器功率放大器 (MOPA),该放大器在单一空间模式下实现了 750 mW 的功率。集成设备用与半导体光放大器对齐的快轴和慢轴透镜取代单模激光器,在减小尺寸和复杂性的同时提高了功率。BluGlass 首席执行官 Jim Haden 表示:“我们在可见光 GaN 激光器、单模、近单频、MOPA 和光子集成解决方案方面的领先进展是革命性行业的关键第一步,包括航空航天、国防、量子计算和生物医学应用。” BluGlass 正在扩展可见激光能力的范围,从紫色到蓝绿色的 DFB 波长的增加、世界一流的噪声抑制以及单模激光器与功率放大器的集成,在单一空间模式下可实现 750 mW 的蓝光,这些都证明了我们世界领先的团队所开创的惊人创新。“我们不断增长的战略能力使 BluGlass 能够利用量子传感、通信和计算等令人兴奋的增长市场。这些进步将使我们的客户能够通过创建局部量子解决方案来解决复杂问题,例如大气激光雷达检测晴空湍流、水下通信和激光雷达以及 GPS 欺骗和干扰。
在过去的二十年中,锂离子电池已发展成为最主要的电化学储能系统,锂离子电池材料和系统工程也取得了重大进展 [1-3]。传统锂离子电池 (LIB) 的一个重大限制是出于安全考虑无法使用元素锂作为阳极材料。在反复充电的过程中,锂不会均匀沉积;相反,它倾向于形成树枝状结构。这些枝晶会向阴极延伸,导致短路并可能导致电池爆炸 [4]。近年来,镁离子电池(后锂电池)备受关注,被认为是锂基技术的有前途的替代品,尤其是在电动汽车应用领域 [5-6]。与受地质储量有限的锂不同,镁在地壳中的含量要丰富得多,约占 1.5 wt%。镁离子电池比锂离子电池具有多项优势,例如,其理论体积能量密度高达 3833 mAh/mL,而锂金属阳极的理论体积能量密度仅为 2046 mAh/mL。此外,镁离子系统具有较高的重量容量,为 2205 mAh/g,并且
知识管理是一种“诀窍”的表达,通过这种表达,公司可以获取和应用共享知识来实现创新、提高绩效并获得长期竞争优势。本研究调查了约旦电信行业知识管理与组织绩效衡量与创新能力之间的关联。使用描述性和推断性统计数据(例如回归分析和结构方程模型)分析了来自 Zain、Orange 和 Umniah 等主要电信公司员工的 575 名回复。知识管理对组织绩效衡量结果的影响为正,R 平方为 0.803。每个预测变量就 B 而言的变化为:知识创造,0.179;知识存储,0.196;知识共享,0.399;知识应用,0.221;知识评估,0.234。此外,创新能力正向调节知识管理对组织绩效衡量的影响。总体而言,该研究结果强调,企业应有效地处理其知识资产并增强其创新能力,因为它有可能在先进时代保持竞争优势和整体绩效。