山梨县的米仓山光伏电站已经演示了使用高温超导磁轴承 (SMB) 的飞轮储能系统 (FESS) 的应用。为了将 FESS 作为一种能够防止取消再生制动的系统应用于铁路,必须增加其储能容量。因此,进行了高达 158 kN 的悬浮力试验和确定悬浮力蠕变特性的试验,以验证 SMB 悬浮力的裕度。此外,为了评估 SMB 悬浮和旋转特性在转速反复变化下的长期可靠性和耐久性,正在开发能够同时测试 SMB 悬浮和旋转状态的新型 SMB 测试设备。
癌症干细胞(CSC)是罕见的癌细胞,被认为是癌症复发和转移的原因。但是,CSC很难孤立且知之甚少。在此报道,通过对每个预插入胚胎类似于胚胎的核心壳微胶囊的纳米尺度水凝胶核心中的一个癌细胞进行微囊性癌细胞,用于无标记的无标记分离和CSC培养方法。只有一小部分单独囊化的癌细胞才能扩增成细胞菌落。基因和蛋白质表达分析表明菌落中细胞的高干性。重要的是,菌落细胞能够跨组织多曲线(例如,内皮,心脏,神经和成骨)的差异,对于使用其他当代方法分离的“ CSC”未观察到。进一步研究菌落细胞具有高度致肿瘤,转移性和耐药性。这些数据表明,通过生物启发的单细胞培养方法获得的菌落细胞是真正的CSC。显着地,确定了多种途径在CSC中上调,并且与途径相关的基因富集与乳腺癌患者的存活率显着降低相关。总的来说,这项研究可以提供一种有价值的方法来隔离和培养CSC,以促进对癌症生物学和病因的理解以及有效的CSC靶向癌症疗法的发展。
中立的核心理念是,它不仅是要找到和包括一种是特定功能中表现最好的细菌或真菌,而且还要收集最能在各种土壤条件下执行特定功能的微生物。无论地理区域或土壤条件如何,这种方法为Popul8中的微生物提供了最佳机会。
2020 财年,经审查的飞机的运营和支持 (O&S) 成本总计约为 540 亿美元——考虑到通货膨胀因素,使用 2020 财年不变美元计算,自 2011 财年起减少了约 29 亿美元。维护成本成为 O&S 成本的更大一部分——自 2011 财年起增加了 12 亿美元。空军和陆军的 O&S 成本有所下降,而海军和海军陆战队的 O&S 成本有所增加。根据我们的分析和项目办公室提供的信息,这些趋势主要是由飞机库存规模的变化和飞行小时数的减少所驱动的。此外,不同机队的 O&S 成本差异很大。例如,我们审查的系统的 2020 财年总 O&S 成本从 KC-130T 机队(海军和海军陆战队)的约 9700 万美元到 F-16 机队(空军)的约 43 亿美元不等。根据我们的分析和系统项目办公室提供的信息,成本差异取决于飞机类型和机队年龄、库存中包含的飞机数量以及机队的飞行小时数等因素。
目的:本文概述了在激光加工过程中能够在铝/铝合金金属基复合材料 (MMC) 中实现原位强化的一些陶瓷材料。本文还提出了进一步利用原位强化能力开发高质量 MMC 原料材料的观点。设计/方法/方法:撰写本文所采用的方法包括对 MMC 增材制造 (AM) 相关文献的回顾。结果:人们普遍认为,原位强化方法已被证明比非原位方法更具优势。尽管仍存在一些挑战,例如有害相的形成和低熔点元素的蒸发,但原位强化方法可用于为 MMC 的 AM 定制设计复合粉末原料材料。在激光熔化成所需组件之前对原位金属基复合粉末进行预处理或定制设计,为金属增材制造带来了更多希望。实际意义:尚未解决开发可使用合适的 AM 技术直接制造而无需预先进行混合或机械合金化等粉末加工的 MMC 粉末原料的需求。因此,拥有预处理的原位增强 MMC 原料粉末可以轻松制造 MMC 并具有 AM 技术粉末回收的其他优势。原创性/价值:本文解释的想法与金属基复合材料 AM 加工的材料开发有关。本文指出了 MMC 材料原料粉末开发的未来趋势以及进一步开发 MMC 和 AM 技术的新思路。强调了定制设计复合粉末而不是仅仅混合它们的优势。关键词:金属基复合材料、原位增强、AM 材料、SLM、直接打印对本文的引用应以以下方式给出:UA Essien、S. Vaudreuil,用于增材制造的原位金属基复合材料开发:视角,材料与制造工程成就杂志 111/2 (2022) 78-85。 DOI:https://doi.org/10.5604/01.3001.0015.9997
三菱电气公司prd.gnews@nk.mitsubishielectric.co.co.jpeng。)kiwa@okayama-u.ac.jp https://www.okayama-u.ac.jp/user/eng_aemt/index/index.html评估和宣传科,Osaka Universition of Engineering,Osaka University kou-soumu-soumu-soumu-hyoukakouhou@osaka.osaka.osaka-akaaka-akaaka-saka.jp worder&diveriie.jp wordies rigrige&diveriie.jp risies rimiese.jp risies rimie>
摘要。功能性MRI能够通过血氧水平依赖性评估个体的认知能力。由于大脑功能的复杂性,探索认知能力和大脑功能连接性之间的关系极具挑战性。最近,已使用图形神经网络来提取用于预测认知评分的功能连接特征。尽管如此,这些方法具有两个主要局限性:1)忽略大脑的层次结构:在每个大脑区域内丢弃细粒度的信息,以及有关大脑功能层次结构的多个尺度的额外的补充信息; 2)忽略大脑的小世界性质:用于产生功能连通性的库租方法可产生定期网络工作,其信息传输效率相对较低。为了解决这些问题,我们提出了一个用于认知预测的小世界脑连接组(SW-HGL)框架的层次图学习。该框架由三个模块组成:金字塔信息提取模块(PIE),小世界大脑连接组构造模块(SW-BCC)和分层图学习模块(HGL)。指定,PIE通过社区聚类和图形池在微观尺度(通信级别)和宏观尺度(区域级别)上识别代表性顶点。SW-BCC通过重新布线定期网络并在区域和社区层面建立功能连接来模拟大脑的小世界本质。MSFEF是一个双支球网络,用于提取和融合微尺度和宏观尺度特征,以进行认知评分预测。与最先进的方法相比,我们的SW-HGL同意在HCP数据集上实现出色的性能。代码可在https://github.com/cuhk-aim-group/sw-hgl上找到。
正在研究几个永久性的太阳系体,包括火星和冰冷的月亮。在这样的位置,微生物的寿命必须应对低温和高压和低压,在火星表面上的 * 10 2到10 3 pa,在冰冷月球地下海洋中的 * 10 8 –10 9 pa。细菌肉细菌由以前被证明在低温下和低压或高压下没有氧气的物种组成,但迄今尚未探索该属的整个压力范围。在本研究中,我们在2 c的厌氧条件下,在复杂的液体培养基中进行了14种代表11种的肉网菌株,在2 c和一系列压力下,跨越5个数量级的压力,从10 3
作者:Herb Shivers,博士,PE,CSP,NASA 马歇尔太空飞行中心安全与任务保障局副局长。NASA 正在开发太空发射系统——一种先进的重型运载火箭,它将为人类探索地球轨道以外的空间提供全新的能力。太空发射系统将提供一种安全、经济且可持续的手段,让我们能够超越目前的极限,从独特的太空视角探索新事物。首次开发飞行或任务计划于 2017 年底完成。太空发射系统 (SLS) 将用于将猎户座多用途载人飞船以及重要的货物、设备和科学实验运往地球轨道和更远的目的地。此外,SLS 将作为商业和国际合作伙伴向国际空间站提供运输服务的后备。SLS 火箭将结合航天飞机计划和星座计划的技术投资,以利用成熟的硬件和尖端的工具和制造技术,从而大大降低开发和运营成本。该火箭将使用液氢和液氧推进系统,该系统将包括航天飞机计划的 RS-25D/E 发动机(用于核心级)和 J-2X 发动机(用于上级)。SLS 还将使用固体火箭助推器进行初始开发飞行,而后续助推器将根据性能要求和可负担性考虑进行竞争。SLS 的初始升力为 70 公吨。这超过 154,000 磅,即 77 吨,大约相当于 40 辆运动型多用途车的重量。升力将可升级到 130 公吨——超过 286,000 磅,即 143 吨——足以升起 75 辆 SUV。这种架构使 NASA 能够利用现有能力并降低开发成本,方法是将液氢和液氧用于核心级和上级。此外,这种架构提供了一种模块化运载火箭,可以使用
背景 5 国防部通常没有实现所选飞机的任务能力目标,任务能力率呈下降趋势,并且存在许多维持挑战 9 所选飞机的运营与维护成本及其变化趋势 15 所选国防部飞机的维持简要概览 19 空中加油机 21 KC-130T 大力神 (海军/海军陆战队) 22 KC-130J 超级大力神 (海军陆战队) 26 KC-10 延长器 (空军) 31 KC-135 同温层加油机 (空军) 35 反潜机 39 EP-3E 白羊座 II (海军) 40 P-8A 海神 (海军) 44 轰炸机 48 B-1B 枪骑兵 (空军) 49 B-2 幽灵 (空军) 53 B-52 同温层堡垒 (空军运输机 61 C-2A 灰狗 (海军) 62 C-130T 大力神 (海军) 66 C-5M 超级银河 (空军) 70 C-17 环球霸王 III (空军) 74 C-130H 大力神 (空军) 78 C-130J 超级大力神 (空军) 82 指挥和控制飞机 86 E-2C 鹰眼 (海军) 87 E-2D 先进鹰眼 (海军) 91 E-6B 水星 (接管和撤出) (海军) 95 E-3 哨兵 (机载预警和控制系统) (空军) 99 E-4B 国家空中作战中心 (空军) 103 E-8C 联合监视目标攻击雷达系统 (空军) 107 战斗机 113 EA-18G 咆哮者 (海军) 114 F/A-18A-D 大黄蜂 (海军/海军陆战队) 118 F/A-18E/F 超级大黄蜂 (海军) 122 F-35 闪电 II 联合攻击战斗机 (海军/海军陆战队/空军) 126 AV-8B 鹞 II (海军陆战队) 134 A-10 雷电 II (空军) 139