IEC 61000-4-2标准用于测试ESD免疫。表2-6提供了ESD测试详细信息。产品的目标应用程序和属性将确定所需的测试水平。有关更多详细信息,请参阅IEC 61000-4-2标准。当ESD到达触摸电极时,它会立即产生几个KV的电势差。这可能会导致CTSU测量值中发生脉冲噪声,降低测量精度,或者由于检测到过电压或过电流而导致的测量值。请注意,半导体设备并非旨在承受ESD的直接应用。因此,应使用设备盒保护的板上对成品进行ESD测试。在董事会本身引入的对策是在ESD罕见的情况下,由于某种原因会进入董事会的罕见情况,可以保护电路的故障措施。
COVID-19 已在全球蔓延,早期发现是控制其传播和预防重症病例的关键。然而,必须使用不同的策略开发诊断设备,以避免在大流行情况下因测试需求量大而导致测试制造所需物资短缺。此外,一些热带和亚热带国家还面临着登革热和寨卡病毒的流行,这些病毒在早期阶段症状相似,并且在血清学测试中存在交叉反应。在此,我们报道了一种基于电容检测严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 刺突蛋白的定性免疫传感器,SARS-CoV-2 是 COVID-19 的病原体。该传感器装置在 1 kHz 频率下表现出良好的信噪比 (SNR),登革热和寨卡病毒 NS1 蛋白的电容变化绝对值(| Δ C| = 1.5 ± 1.0 nF 和 1.8 ± 1.0 nF)明显小于刺突蛋白(| Δ C| = 7.0 ± 1.8 nF)。在优化条件下,当 | Δ C| > 3.8 nF 时,所建立的生物传感器能够指示样品中含有目标蛋白,由截止值 (CO) 决定。该免疫传感器是使用叉指电极开发的,该电极需要一个带有简单电路的测量系统,该电路可以小型化以实现即时检测,为 COVID-19 诊断提供了一种替代方法,尤其是在寨卡病毒和登革热同时发生的地区。
mikromedia 5 的可用性并不止于其加速原型设计和应用程序开发阶段的能力:它被设计为完整的解决方案,可直接实施到任何项目中,无需进行额外的硬件修改。四个角上的四个安装孔(3.2mm / 0.126”)允许使用安装螺钉进行简单安装。对于大多数应用程序,只需一个漂亮时尚的外壳即可将 mikromedia 5 开发板变成功能齐全、高性能、功能丰富的设计。
尽管如今服装上的集成传感器是核心领域,但纺织品上集成传感器技术的新用途在当前研究中也越来越受到重视。织物用于许多与个人服装无关的领域。这些领域包括汽车工业、家居服装、农业、建筑材料、海运业等。[7,10] 应用纺织技术生产智能纺织品可以提高产品在这些领域的价值,公司可以利用这些价值推出新产品。智能纺织品可以提供用于意想不到的应用的工具,例如使用新纺织材料和标准电子设备为织物添加湿度或存在检测等功能。[11] 集成纺织传感器的一些优点是能够以更低的成本覆盖比标准传感器更长的区域,比电子元件的要求更少,或者能够监测物理或化学刺激而不会显着影响织物的结构。生产纺织传感器的集成方法也是世界各地的研究领域,其中可以找到各种各样的方法。有以化学为导向的方法,如逐层自组装法[12]、通过电磁场集成(静电纺丝)[13],以及使用纺织工艺引入传感器的方法,如刺绣或机织制造方法。不同的研究已经证明,刺绣是最具成本效益的原型设计和小规模生产技术,因为它可以快速制作原型并且所需机器成本低廉。以前关于电容式叉指传感器的研究[14–16]是使用刺绣作为集成方法进行的。然而,当纺织传感器用于医疗保健应用时,小规模生产可能是一个缺点。众所周知,机织织物可以大规模生产,成本低于刺绣。此外,编织技术可以生产完全集成且非触摸感应的纺织传感器。[17]编织电子纺织品也是一个不断发展的研究领域,近年来一直在增长。 [18,19] 编织技术为纺织品传感器的集成提供了更好的效果,同时保持了基材的纺织品特性。多年来,湿度一直是医院或养老院的关键因素。与长期接触相关的伤害
表格列表表 2-1. 设计挑战................................................................................................................................................................ 7 表 2-2. 其他相关资料................................................................................................................................................. 7 表 3-1. 器件建议....................................................................................................................................................... 10 表 3-2. 设计挑战....................................................................................................................................................... 10 表 3-3. 相关资料....................................................................................................................................................... 10 表 4-1. 设计挑战....................................................................................................................................................... 13 表 4-2. 相关资料....................................................................................................................................................... 13 表 5-1. 器件建议....................................................................................................................................................... 17 表 5-2. 设计挑战....................................................................................................................................................... 18 表 5-3. 相关资料....................................................................................................................................................... 18
摘要。由于它们在从人和自动设备中获取信息方面的重要性,因此柔性压力传感器(FPS)已被广泛用于电子皮肤,软机器人,消费电子,健康监测和人类计算机相互作用等不同领域。在各种软压传感器中,电容压力传感器的特征是其简单的结构,低成本和稳定的性能。尽管很容易制造这种压力传感器,但它仍然是提高灵敏度并延长系统效率的热点。本文回顾了有关柔性电容压力传感器的相关研究,包括工作机制,电容器结构,改善电容传感器性能的方法以及应用。最后,对实现高敏性的有效方法进行了比较,并且预测了柔性电容传感器的发展趋势。本文的目的是为研究高度敏感且高度敏感的材料提供一些有用的信息,以制造高度敏感的材料来制造柔性电容传感器。
具有空间规则化的电容式微重力流体质量计是一种可安装在推进剂容器上的传感器,可以以可确定的精度确定容器体积内的液体和气体的质量。该传感器由 1) 安装在容器壁内表面上的多个离散电极、2) 信号生成、数字化、信号调节和一般支持(例如电源)电子设备、3) 电极和电子设备之间的电连接以及 4) 用于将一组电容测量值(即电容矩阵)转换为体积分数的算法组成。电子设备生成正弦波并将其施加到单个电极上,然后电子设备测量所有其他电极上的电荷。电容只是电荷除以电压。对所有电极重复此操作,无需重复。对于具有固定体积的容器,只要知道流体成分、温度和压力,就可以使用理想气体定律将体积分数转换为质量分数。
摘要:MEMS传感器的不断开发和微型化总是为它们在与健康相关和医疗应用中使用的新可能性提供了新的可能性。MEMS设备在弹性系统中的应用允许更快的诊断,并显着促进医务人员的工作。MEMS加速度计构成此类系统的重要组成部分,尤其是那些用于监测失衡障碍患者的系统。此类传感器的正确设计对于收集有关患者运动的数据和确保整个系统的整体性能至关重要。本文介绍了专门用于跟踪患者运动的设备的三轴加速度计的设计和测量。它的主要重点是传感器的表征,比较不同的设计并评估包装和读取电路集成对传感器操作的影响。广泛的测试和测量结果确保了设计的加速度计正常工作,并允许在灵敏度/稳定性方面识别最佳设计。此外,仅当读数电路与MEMS传感器集成在相同的包装中时,提出的传感器作为应用加速度的函数的响应才能证明非常好的线性。
麦克风根据MEMS技术制造,由于其微型尺寸,由于温度变化而导致低能消耗,因此发现了新的应用(微电动机械系统)。在物联网技术传播之后,微型高效MEMS麦克风对医疗设备的需求增加了[1]。对人体特征的持续监测al-lows在早期阶段检测健康问题并找到及时的医疗治疗。例如,第[2]介绍了血压与第二心脏声音S2之间相关性的研究结果。可以通过测量音调心脏的声音来检查血压。但是,大多数MEMS微型型可以彻底处理声频范围(20-20000 Hz)。此外,血压脉冲频率构成1.5–2.1 Hz [3]。因此,开发可具有1到20 Hz的适当电特性的低频MEMS麦克风已成为一项关键任务。