Kevin Robert、Didier Stiévenard、D. Deresmes、Camille Douard、Antonella Iadecola 等人。高性能片上微型超级电容器的伪电容性氮化钒厚膜电荷存储机制的新见解。能源与环境科学,2020 年,13 (3),第 949-957 页。�10.1039/c9ee03787j�。�hal-02553060�
实现对实际应用的高灵敏度一直是可穿戴柔性压力传感器的主要发育方向之一。本文引入了激光斑点灰度光刻系统和一种新的方法,用于使用颗粒状激光斑点图案制造随机锥形阵列微观结构。其可行性归因于激光斑点强度的自相关函数,该功能遵循第一类的一阶Bessel函数。通过客观的斑点尺寸和暴露剂量操纵,我们开发了具有各种微形态的微结构光蛋白天。这些微结构用于形成用于柔性电容压力传感器中的聚二甲基硅氧烷微结构电极。这些传感器表现出超高灵敏度:低压范围为0 –100 pa的19.76 kPa -1。它们的最小检测阈值为1.9 pa,它们保持稳定性和弹性超过10,000个测试周期。这些传感器被证明擅长捕获生理信号并提供触觉反馈,从而强调其实际价值。
伪电容剂是一类新兴的储能材料,在电池的能量密度与电动双层电容器的功率密度之间提供了有吸引力的折衷。降低电池材料的粒径和增加的表面积是引入假能映射行为和增加功率密度的常见方法。但是,在许多情况下,随着晶体尺寸的降低,还引入了未知范围的晶格障碍,因此很难解开大小和混乱对快速充电性能的相对贡献。在这项工作中,合成了一系列纳米结构的MOS 2结构,并具有不同的晶体大小和结晶度,以使大小和障碍对电荷/放电动力学的影响解散。通过总X射线散射实验和配对分布函数分析来量化每种材料中疾病的程度和类型。电化学表征,包括电静态速率能力,环状伏安法和各种动力学分析,用于证明既减小粒径又是引入晶格障碍都是增加电荷存储动力学的有效策略,并且效果是添加的。最后,Operando X射线衍射测量结果表明,可以使用大小和混乱抑制一阶LI互化诱导的相变,这是启用假能力电荷存储的关键特征。
本文开发了一种基于机电调幅的实时电容传感方案,用于检测单轴静电梳状驱动微镜的扫描角度和相位,以实现闭环控制。该方案将一个叠加了高频载波信号的正弦波电压信号施加到微镜的共用梳状驱动器上,用于传感和驱动。对驱动/传感电路在频域和时域进行了全面分析,以消除馈通并最小化信号失真。实验结果表明,使用2.5 V pp 和1 MHz 的载波信号,微镜扫描角度的测量精度达到0.15 ◦,时间延迟可控制在0.47 μs 以内。为了更好地理解微镜的扫描稳定性,还研究了温度变化对微镜相位响应的影响。当温度从 25 ◦ C 变为 35 ◦ C 时,以 3840 Hz 驱动的微镜的测量时间延迟从 0 变为 2.4 μ s。所提出的电容式传感方案可用于同时有效测量静电梳状驱动 MEMS 镜的角位置和相位,而无需添加任何外部元件。
摘要 — 最近的研究表明,记忆电容设备网络为储存器计算系统提供了低功耗的理想计算平台。随机、交叉或小世界幂律 (SWPL) 结构是储存器基底计算单个任务的常见拓扑结构。然而,神经学研究表明,与不同功能相关的皮层大脑区域互连形成富俱乐部结构。这种结构允许人类大脑同时执行多项活动。到目前为止,记忆电容储存器只能执行单一任务。在这里,我们首次提出了集群网络作为记忆电容储存器同时执行多项任务。我们的结果表明,在三个任务上,集群网络分别比交叉和 SWPL 网络高出 4.1 × 、5.2 × 和 1.7 × 倍:孤立口语数字、MNIST 和 CIFAR-10。与我们之前和已发表结果中的单任务网络相比,多任务集群网络可以实现类似的准确率,分别为 MNIST、孤立口语数字和 CIFAR-10 的 86%、94.4% 和 27.9%。我们的扩展模拟表明,输入信号幅度和集群间连接都会影响集群网络的准确性。选择信号幅度和集群间链接的最佳值是获得高分类准确率和低功耗的关键。我们的结果说明了记忆电容式大脑启发集群网络的前景及其同时解决多项任务的能力。这种新颖的计算架构有可能使边缘应用程序更高效,并允许无法重新配置的系统解决多项任务。
许多新兴应用中的主流介电储能技术,如可再生能源、电气化交通和先进推进系统,通常需要在恶劣的温度条件下运行。然而,在当前的聚合物介电材料和应用中,优异的电容性能和热稳定性往往是互相排斥的。在这里,我们报告了一种定制结构单元以设计高温聚合物电介质的策略。预测了由不同结构单元组合而成的聚酰亚胺衍生聚合物库,并合成了 12 种代表性聚合物用于直接实验研究。这项研究为实现在高温下具有高能量存储能力的坚固稳定的电介质所必需的决定性结构因素提供了重要的见解。我们还发现,当带隙超过临界点时,高温绝缘性能的边际效用会递减,这与这些聚合物中相邻共轭平面之间的二面角密切相关。通过实验测试优化和预测的结构,观察到在高达 250°C 的温度下能量存储增加。我们讨论了将该策略普遍应用于其他聚合物电介质以进一步提高性能的可能性。
Xiangjun Chen 1,§ , Xiaoxiang Gao 2,§ , Akihiro Nomoto 2,§ , Keren Shi 1 , Muyang Lin 2 , Hongjie Hu 1 , Yue Gu 1 , Yangzhi Zhu 2 , Zhuohong Wu 2 , Xue Chen 1 , Xinyu Wang 2 , Baiyan Qi 1 , Sai Zhou 1 , Hong Ding 2和Sheng Xu 1,2,3,4()1材料科学与工程课程,加利福尼亚大学圣地亚哥分校,拉荷亚大学,加利福尼亚州92093,美国2美国2纳米工程系,加利福尼亚州加州圣地亚哥,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国3093,加利福尼亚大学3093093加利福尼亚州圣地亚哥,拉霍亚,加利福尼亚州92093,美国§Xiangjun Chen,Xiaoxiang Gao和Akihiro Nomoto为这项工作做出了同样的贡献。©Tsinghua大学出版社和Springer-Verlag GmbH德国,Springer Nature 2021收到的一部分:2021年1月6日 /修订:2021年3月17日 /接受:2021年3月21日< / div>
经历可逆且快速的电力过程的固态材料是在新工业革命时代发挥作用的新一代设备的关键组成部分。电池和超级电容器,对于高能源存储/转换效率,代表了能够确保获得负担得起,可靠,可持续和现代能源(ONU可持续发展目标n。7)的技术。反过来,数字和信息和通信技术(物联网,云计算)正在转换服务,制造业(行业4.0)和社会资产,并在健康和环境中受益。在物联网中,能量自主权仍然是主要要求。实际上,需要研究开发从环境中收获和存储能源而不会浪费它的系统。[1]在这一领域,离子正在成为一门新学科,它可以桥接电子,电化学,固态物理,工程和生物科学。[2,3]为例,离子门控晶体管(IGT)是离子设备,对于低压操作特性而言,它是几种应用的有吸引力的低功率电子组件,特别是感应和生物感应。[4]电阻状态可以通过电化学切换到存储信息的电路元素对开发神经网络(NN)算法也非常有吸引力
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。