由于其短期变化性高,孤立工业电网中的太阳能光伏电力面临着电网可靠性的挑战。存储系统可以提供电网支持,但成本高昂,需要仔细评估电力容量需求。电池尺寸确定方法现在是许多研究的重点,详细建模和复杂优化在全球范围内呈上升趋势。然而,尽管太阳变化可能是不确定性和电池尺寸过大的根源,但它很少作为场景的输入。本研究利用小波变化模型和两个变化指标提出了几种太阳变化场景。这些场景被用作两种尺寸确定方法的输入,以比较最终的电池容量,并得出关于建模复杂性和场景识别作用的结论。结果表明,忽略光伏电站的平滑效应会导致对电池功率支持的估计过高 51%。另一方面,复杂的动态建模可能会使电池功率容量降低 25%。经济分析表明,可变性情景和电池尺寸方法的适当组合可以将平准化电力成本降低 3%。
基于多个电流水平下的增量容量峰值跟踪的锂离子电池 SoH 估算,用于在线应用 M. Maures a,* 、A. Capitaine a 、J.-Y. Delétage a 、J.-M. Vinassa a 、O. Briat aa Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, 法国 摘要 本文提出了一种基于增量容量 (IC) 峰值跟踪的高 C 速率健康状态 (SoH) 诊断方法的扩展。使用一组经过不同老化协议的 11 个 NCA 锂离子电池。以 C/20、C/10、C/5 和 C/2 进行充电和放电循环,然后用于 IC 分析。给出并建模了 IC 峰值变化与 SoH 之间的相关性,并显示它们是所有测试 C 速率的准确估计量。 1. 简介 由于对新可再生能源解决方案的强劲需求,如交通运输领域的电动汽车 (EV) 和多电动飞机 (MEA),或能源领域的电网电池存储,锂离子电池市场正达到历史最高水平。与其他应用相比,这些系统中的电池将面临更为严酷的工作条件:更高的功率和更大的温度变化,这两者都会严重影响电池的退化 [1,2]。因此,有必要跟踪它们的健康状态 (SoH) 并确定何时达到其使用寿命(对于特定应用)。SoH 通常定义为电池在给定时间的最大容量与其初始最大容量之比 [3]。存在不同的估算方法来量化电池的 SoH [4]:基于容量或阻抗、使用弛豫电压或基于增量容量 (IC) 或差分电压 (DV) 曲线。IC 分析提供了有关电池内部退化模式的重要信息 [5,6],因为每个峰值都是电池内部材料相变的结果 [7]。然而,正因为如此,IC 曲线通常是通过非常缓慢的充电/放电获得的 [8,9],这限制了它们的实用性。尽管如此,还是有人提出了基于 IC 峰的几何特性来量化电池 SoH 的估算方法。特别是,[8,9] 表明特定 IC 峰和谷的位置与 SoH 之间存在线性相关性,而 [8] 也表明
在时空中,事件 A 和 B 可以有三种因果关系:A 先于 B ,B 先于 A ,或者 A 和 B 有因果分离,即它们位于一个类空区间。量子力学允许存在与这些情况都不对应的因果结构。启发式地,这可以描绘为将 A 和 B 之间的顺序置于量子叠加中。更准确地说,已经提出了几种使用“过程矩阵”或“量子开关”来实现不确定因果顺序的方法 [1– 6]。虽然这些方法在数学上并不严格等价,但它们都支持一个基本思想:不确定因果顺序本质上是一种量子现象,它为迄今为止主要在时空理论中探索的概念提供了新的启示。最近,在几种量子开关的实现中已经通过实验观察到了这种现象 [7–12]。为了准确衡量量子理论为因果关系研究带来的新元素,可以将因果序的量子控制视为提供非经典通信优势的一种资源,即量子开关中的两个噪声信道可以比任何单个信道传输更多的信息 [13]。这种方法的好处是可以立即阐明量子开关的物理意义,但它依赖于一个目前尚未解决的问题,即任何局部方是否可以操作性地实施这种量子控制 [14]。在本文中,我们假设实证研究已经给出了一个积极的启发式方法:通过量子开关对因果序的量子控制已经通过实验获得。接下来,我们努力从理论上更好地理解此类设置所展示的优势。特别地,一个长期存在的问题涉及这种优势的起源:为了否认量子开关是一个独立的资源,有人认为,两个信道的单程量子叠加,在没有不确定因果顺序的情况下,已经导致了类似的结果[15,16]。在第二部分介绍基本的数学概念之后,我们探讨了这种非因果顺序的有争议的起源。
本研究的主要目的是在控制工作记忆容量 (WMC) 和加工速度的情况下,检查 450 名 7–8 岁、11–12 岁和 14–16 岁儿童的抑制控制与年龄相关的变化,以确定抑制是否是一个独立因素,而远远超出了其对其他两个因素的可能依赖性。这项检查很重要,原因有几个。首先,关于抑制控制与年龄相关的变化的实证证据是有争议的。其次,还没有研究通过控制这些年龄段中加工速度和 WMC 的影响来探索抑制功能的组织。第三,抑制的构造在最近的研究中受到了质疑。多组验证性分析表明,抑制可以组织为一个一维因素,其中加工速度和 WMC 调节某些抑制任务的变异性。抑制过程对处理速度和 WMC 的部分依赖表明,即使在控制 WMC 和处理速度并解决一些方法问题时,抑制因素也能部分解释抑制任务的差异。
肥胖是一种复杂的代谢性慢性疾病,通常伴有自由基的过量产生,从而影响其并发症的发展。尿酸通常与氧化对人体健康的影响有关。尽管最近的证据表明尿酸具有潜在的抗氧化特性,但循环尿酸水平的升高可能是肥胖个体对过量自由基和氧化应激的有害影响的一种适应性保护反应。因此,本研究的目的是评估居住在海平面的超重和肥胖个体的抗氧化能力和氧化损伤标志物与尿酸水平之间的关联。这项横断面研究包括来自厄瓜多尔埃尔奥罗马查拉市的 93 名成年志愿者(28 名男性和 65 名女性),根据体重指数分为三个研究组(正常体重、超重和肥胖)。评估了社会人口特征、生活方式要素和身体测量值,并从所有参与者采集了血样。对血浆样本中的抗氧化物和氧化剂标志物进行了测定,包括自由基清除活性测定 (DPPH)、血浆铁还原能力 (FRAP)、过氧化氢酶 (CAT) 活性、硫代巴比妥酸反应物质 (TBARS) 和蛋白质硫醇基团 (SH 基团)。采用相关系数和线性回归模型评估抗氧化/氧化剂参数与血浆尿酸水平之间的关联。以 FRAP 清除和 CAT 衡量的抗氧化能力在肥胖组中明显高于正常体重组,超重和肥胖个体的尿酸水平与 FRAP (b: 0.578, R: 0.459, p: 0.003) 和 CAT 活性 (b: 1.326; R: 0.432, p: 0.005) 呈显著正相关。因此,现有证据支持尿酸在肥胖发病机制中发挥的潜在抗氧化作用,有助于我们了解这种疾病的特征性氧化应激和炎症。
DART+ 西线是 DART+ 计划的一个变革阶段,将显著提高梅努斯线的铁路运力,该线从都柏林市中心延伸至梅努斯和西边的 M3 公园大道。随着 DART+ 西线的实施,到 2025 年,这条线路的客运能力将从每小时 4,500 人增加到 13,200 人,标志着大都柏林地区的公共交通选择得到显著改善。主要基础设施升级包括约 40 公里铁路的电气化和重新信号、康诺利站的运力提升、斯宾塞码头的新车站以及梅努斯以西维修站的建设。
步行是日常生活的基本活动之一,它让我们能够四处走动并与周围环境建立联系。除了从 A 点到 B 点的交通之外,它在许多日常任务中发挥着重要作用,包括家庭、社交和休闲活动。因此,步行在确保独立性、促进社交互动、提高整体生活质量方面发挥着关键作用。此外,它是维持身体活动的基石,从而保持整体健康。7,8
我的名字叫伊丽莎白·瑞兹纳(Elizabeth Ryznar)博士,我正在作证,以支持蒙哥马利县(Montgomery County)带您自己的手提袋账单,鉴于我作为医生的能力。据估计,人类在世界各地每秒使用160,000个塑料袋,而美国人每年使用365个一次性袋。不幸的是,这些塑料袋由化石燃料和化学品制成。它们不可生物降解或可回收。这些塑料袋最终以垃圾或水道中的垃圾填埋场作为污染。在那里,它们分解为称为微塑料和纳米塑料的微小片段。微塑料和纳米塑料非常小,以至于它们很容易分散在我们的空气,水和土地上,从而促进了广泛的环境污染。一次在环境中,它们通过我们呼吸的空气,我们吃的食物以及我们喝的水最终进入我们的体内。研究已经检测到大多数测试的人体器官,包括大脑,心脏,肺,肠,睾丸和胎盘。他们甚至在胎粪中发现,这是婴儿出生后的第一个粪便。研究表明,微塑料具有负面影响。这些健康影响来自塑料的两个组成部分:来自化石燃料和化学添加剂的聚合物构建块。最近的动物研究表明,微塑性聚合物在其最终发生的每个组织中引起炎症,破坏肠道中的微生物组,并导致与痴呆一致的大脑中蛋白质折叠的异常蛋白质折叠。此外,在过去的一年中,领先的癌症组织和医生被称为微塑料和相关化学物质,是成年人中癌症升高的驱动因素。数十年的动物和人类研究已将与塑料相关的化学物质确定为内分泌干扰物,将它们与肥胖,2型糖尿病,早产,精子计数减少,女性早期青春期以及神经发育条件(如ADHD,自闭症,自闭症和IQ丧失)相关。任何有助于减轻塑料的环境负担的法案都是我们选民健康的净胜利。但是,为了确保该法案的最大有效性,需要关闭漏洞,并且需要设计一种支持低收入购物者的替代方法。谢谢。Elizabeth Ryznar MD MSc Elizabeth.Ryznar.MD@gmail.com https://www.linkedin.com/in/elizabeth-ryznar-0958aa13/ Twitter/X: @RyznarMD Author: Neuropsychiatric Implications of Plastics Pollution in Psychiatric Times
非技术摘要。跨学科的可持续性科学家与许多不同的参与者合作,以追求变革。这样做就选择了为什么以及如何在研究中与不同观点互动。反思性 - 积极的个人和集体批判性反映 - 被认为是研究人员应对所产生的道德和实际挑战的重要能力。我们通过关键的系统方法开发了一种反思性,作为可疑科学的变革能力的框架,这有助于做出任何影响哪些观点的决策,这些观点被明确地包括或排除在研究中。我们建议,跨学科的可持续性研究可以通过培养反思性而变得更具变革性。技术摘要。跨学科可持续性科学越来越多地用于研究变革性变革。然而,跨学科的研究涉及各种各样的参与者,这些参与者有时会有矛盾的观点和世界观。反思性被认为是导致最终挑战的关键能力,但反思性的概念通常集中在个人研究人员的反思上,这些反思缺乏与集体跨学科研究过程和该领域的主要询问方式的明确联系。此差距表明了反射性仍然存在于可持续性科学的外围,并变得“无反射性”,因为关键的维度未被确定。我们的目标是通过关键的系统方法建立反思性作为可持续性科学中的变革能力的框架。我们通过对跨学科,转型和反思性的文献进行快速范围的审查以及对红河盆地(加拿大美国加拿大美国)的场景研究的反思进行了快速范围的审查。框架将反思性描述为培养自我批判和相互学习的动态,嵌入和集体的过程中的能力,以提供变革性变化,通过交互边界过程 - 边界描述,相互作用和变换。案例研究的反思表明,将此框架嵌入研究中如何揭示边界过程,从而阻止转化和培养更反思性和变革性研究。社交媒体摘要。跨学科的可持续性研究可能会通过将反思性作为一种动态,嵌入式和集体学习过程而变得更加转变。
Minibus是May Mobility的第五个独特的车辆平台,将与Toyota Sienna Autono-Maas平台一起集成到舰队中,展示了该公司在自主系统集成中的适应性。这种扩展进一步增强了其服务于更广泛的移动用例,从乘车服务到高容量运输。“我们与Tecnobus的合作伙伴关系表明,我们很认真地对扩大过境通道和减少城市交通拥堵,” May Mobility的首席执行官兼创始人埃德温·奥尔森(Edwin Olson)说。“这是一个很好的例子,说明如何为社区做正确的事也可以很好地发展我们的业务。”该合作伙伴关系还为May Mobility扩展到新的国际市场的道路,由Tecnobus的母公司ICAPGroup及其既定的30年基础设施,跨越27个国家和1,200多个地点的支持。可以在CES展位#3666上找到其移动性,在那里它显示了Toyota Sienna Autono-Maas平台。