脱碳复杂的工业能源系统是减轻气候变化的重要步骤。设计此类部门耦合的工业能源系统向低碳设计的过渡非常具有挑战性,因为在系统设计中,必须考虑成本效益的操作和整个生命周期中环境影响的减少。可以使用软件来确定最佳系统设计:最近,引入了开源框架SECMOD,以通过完全整合生命周期评估来考虑环境影响,以实现多能系统模型的线性优化。在这项工作中,我们扩展了SECMOD,以允许综合决策对于建模工业能源系统至关重要。因此,我们提供了第一个开源的混合企业线性程序框架,并完整地集成了生命周期评估。我们使用secmod来研究扇区耦合的工业能源系统中抽水热量的储能系统的好处,并通过比较经济和气候最佳限度来确定有关系统设计的权衡。
- 每种电动汽车中必不可少的组件的电压转换器(DC-DC转换器)通过调整400V-800V电池电压来提高整体车辆效率,以匹配车辆在车载网络使用的电压。关于OpMobility Opmobility(以前为塑料综合)是可持续发展的全球领导者,也是来自每个流动性领域的参与者的全球技术合作伙伴。创新驱动以自1946年基础以来,OpMobility拥有五个互补业务团体,为客户提供了广泛的解决方案:智能外部系统,定制的复杂模块,照明系统,储能系统以及电池和氢气电气化解决方案。Opmobility的客户也从其内部软件开发专家Op'nsoft受益。2023年的经济收入为114亿欧元,国际占地152株工厂和40个研发中心的占地面积依赖于其40,300名员工,以应对使出行更具可持续性的挑战。opmobility在巴黎的EuroNext A.它有资格获得延期和解服务(SRD),是SBF 120和CAC中60个指数的一部分(ISIN代码:F FR0000124570)。www.opmobility.com
体现的碳 - 脱碳建筑物的新挑战对环境有重大影响,占所有提取物质消费的一半,而欧盟所有废物产量的三分之一。诸如混凝土和钢等关键建筑材料具有较大的碳足迹,这是由于其生产,运输和建筑中所涉及的过程。这些排放物被归类为具体的碳,占欧盟建筑库存总温室气体排放的很大一部分。在2020年,建筑物的总生命周期排放量占欧盟总温室气体排放量的40%以上,体现碳占与建筑物相关的排放的20%以上。通过切换到可再生能源并提高能源效率的能源领域的脱碳和建筑物的运行,体现的碳将在2040年到2040年的全寿命(或WLC)。
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
蓝色碳是被沿海和海洋栖息地隔离的碳,例如红树林,盐泥和海草。这些栖息地提供的碳固换服务可以通过减少温室气体(GHG)排放以及提供其他重要的生态系统服务来帮助缓解气候变化。恢复沿海栖息地的目的是为了隔离蓝色碳可以产生碳信用额,可能抵消恢复成本以及土地所有者的任何收入损失。沿海蓝色碳项目已成功地在海外实施,但是在新西兰Aotearoa(ANZ)尚未建立蓝色碳市场。在这里,我们确定了关键数据差距,这对于在ANZ中开发蓝色碳市场是必要的。通过开发标准化方法来计算碳减排是第一步,将允许对潜在恢复地点进行经济评估。经济评估将确定产生的碳信用额度是否涵盖恢复成本并损失了恢复土地的收入。一旦确定了经济上可行的潜在恢复地点,可以通过产生的共同利益的价值(即生物多样性)来确定地点的优先级。ANZ中也存在法律不确定性,而前岸的所有权是一个有争议的话题。当前的立法规定,尽管MāOri可以申请承认该地区的习惯权,利益和所有权,但官方和任何其他人都不拥有或拥有共同的海洋和沿海地区。财产权的法律地位将对私有土地产生重大影响,因为尚不清楚将来随着海平面上升而被淹没时是否将土地视为岸上。在这里,我们讨论了进一步的政策推动者,包括政府的作用和保险业,可以鼓励私人土地所有者摄取碳项目。在市场评估中填补这些空白,并认识到土著所有者和习惯权持有人对沿海土地的关键作用,可以促进在新西兰Aotearoa的沿海蓝色碳机会的运作。
摘要:植被和土壤占据了大约30%的人为CO 2排放,因为从生产率和营业额较大的较大总碳交换中的不平衡很小,但受到限制不佳。我们结合了1960年代核弹测试生产的新的放射性碳(14 C)和模型模拟,以评估陆地植被中的碳循环。我们发现,耦合模型对比项目中使用的大多数最先进的植被模型低估了植被生物量的14 C积累。我们的发现,加上对植被碳储备和生产力趋势的限制,这意味着目前净初级生产率可能至少为80 pgc/yr,而当前模型预测的43-76 pgc/yr。在陆地植被中存储人为碳的储存可能比以前预测的更短暂和脆弱。
13基线年本列表示银行用来为煤炭部门设定其2030年脱碳目标的基线年。目标基础年份不得超过目标设定之前的两个完整报告。银行可以在设定进一步的目标或特殊经济环境的情况下和/或银行自身控制以外的数据质量问题的情况下,如果允许他们在大多数目标中使用相同的基准年和/或基本年度否则将是非典型的,则将长达四年。银行应在这种情况下提供理由。
这项调查的主要目的是确定尼泊尔莫朗区不同海拔不同森林林分之间的生物量和碳分布模式。值得注意的是,估计尼泊尔东森林相对较少的碳储备和生物量。估计五个不同森林地点的生物量和碳库存的数据,即。Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma位于平均海平面100-1300m之间,是通过随机选择的库存图获得的。总共建立了50个样品图,在不同的高度区域的五个森林林座中建立。在每个森林地点,布置了10个20m×20m尺寸的样品图,以测量树木。在灌木和草药的情况下,分别建立了5m×5m和1m×1m的嵌套图。通过应用异形方程来促进树木和灌木的生物量的计算,而草药的生物量通过收获方法确定。使用灰分含量法估计植物材料中的碳浓度。对Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma Forest地点的架子生物量的全面分析是:815.86 mg HA -1,414.19 mg HA -1,606.81 mg Ha -1,519.20 mg ha -1,519.20 mg ha -1,以及在29.96 mg a -1中的住所,分别是分别的。森林),在Bhaunne地点(低海拔森林)。同样,与Sagma遗址相比,在Bhaunne,Raja-Rani,Murchungi和Adheri站点的草药生物量中观察到了值得注意的变化。根据林分生物量的变化,森林站点的碳库存也显示出相同的趋势,但值在140.19 mg C HA -1至333.63 mg C HA -1之间,sagma位置的最小值范围为Bhaunne站点的最小值。弗里德曼测试的应用揭示了Murchungi和Sagma位点之间的树木生物量以及Adheri和Sagma位点之间的灌木生物量的统计学显着变化。本研究在碳管理上有助于理解森林生态系统。
溶解的O 2降低对浮游植物生理学的阳性或负面影响取决于光暴露的持续时间。为了揭示潜在的机制,海洋模型硅藻thalassira pseudonana在三个溶解的O 2水平(8.0 mg l -1,环境O 2; 4.0 mg L -1,Low O 2;和1.3 mg L -1,低氧)中进行培养,以比较其生长,蜂窝池组成和黑暗的生长,和物理学和黑暗周期。结果表明,环境O 2下的生长速率为0.60±0.02天-1,是光周期内生长速率的一半,在黑暗时期内增长率为15倍。降低O 2在光周期增加了生长速率,但在黑暗时期降低了它,并在光和黑暗时期都降低了细胞色素含量。在光中,低O 2增加了细胞碳(C)的含量,而缺氧则降低了它,而在黑暗中的增加和降低的程度更大。低O 2对细胞氮(N)含量没有显着影响,但缺氧降低了。低O 2对光合效率没有显着影响,但降低了黑暗呼吸率。在黑暗中,低O 2对细胞C损耗率没有显着影响,但n损耗率降低,导致POC/POC比率增加。此外,缺氧加剧了细胞死亡率和下沉,这表明硅藻衍生的碳埋葬可能会由于未来的海洋脱氧而加速。
蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。