使用碳酸钠(NACLO 4)基于琼脂 - 阿加尔(NACLO 4)的生物聚合物电解质膜的开发,使用乙烯碳酸乙酯(EC)作为原发性Na-Ion Battery S. Sowmiya a,*,*,C。Shanthi A,S.Selvasekarapandian B,C. S. Selvasekarapandian B,C a s. s. selvasekarapandian b,c a s。印度NADU,B材料研究中心,Coimbatore 641045,印度泰米尔纳德邦Bharathiar University,Coimbatore 641046,印度泰米尔纳德邦,印度泰米尔纳德邦641046,当前的研究调查了乙烯碳酸盐(EC)碳酸盐(EC)综合perch perch perch perch perch perch perch perch and agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-sod.采用便捷的溶液铸造方法来制造生物聚合物膜。制备的生物聚合物膜的特征是XRD,FTIR,DSC,AC阻抗,TGA,CV和LSV技术。X射线衍射分析(XRD)研究膜的晶体/无定形性质。傅立叶变换红外光谱(FTIR)证实了盐和聚合物之间的络合。添加钠盐并掺入增塑剂可将纯琼脂的离子电导率从3.12×10 -7 s cm -1 cm -1至3.15×10 -3 s cm -1提高。差异扫描量热法(DSC)研究玻璃过渡温度(T g)趋势,盐浓度。最高的导电生物聚合物膜的T g值为22.05°C。热重分析(TGA)检查膜的热稳定性。Wagner的DC极化技术评估了制备的膜的转移数。[4]。分别通过线性扫描伏安法(LSV)和环状伏安法(CV)研究了最高导电膜的电化学和循环稳定性。这些发现促进了具有最高性能生物聚合物膜的原代钠离子导电电池的发展。用两种不同的阴极材料(V 2 O 5和MNO 2)研究了电池的性能,当使用V 2 O 5用作阴极时,达到了3.13 V的最高显着开路电压(OCV)。(收到2023年9月13日; 2023年12月11日接受)关键词:生物聚合物膜,增塑剂,反卷积,电导率研究,环状伏安法1。正在进行研究以创建生物基的聚合物来解决环境挑战,这是当代全球目标的一部分,以为基于生物的未来做一个环保过程[1]。预计聚合物研究的增加,特别是关于生物聚合物,以满足未来的工业需求[2]。聚合物电解质(PE)的主要优势是它们的机械品质,更容易获得的薄膜制造和电化学设备。它们可以与电极材料形成良好的接触[3]。由于它们在固态电化学设备中的用途,离子传导PE引起了固态离子学的注意。聚合物研究的主要基本目标是合成具有优异离子电导率的聚合物系统。由于其强大的离子电导率,广泛的电化学稳定性和高能量密度,它们可以是固态电池中的电解质[5]。固体聚合物电解质(SPE)可以开发各种固态电化学设备,例如电池,燃料电池,传感器和太阳能电池[6,7]。生物聚合物及其基于的产品已被研究针对各种新型应用,在这些应用中,它们可以替代使用现有的
通过球磨机械化学工艺从废贝壳中生产纳米晶和无定形碳酸钙 Chiara Marchini, 1 Carla Triunfo, 1,2 Nicolas Greggio, 3 Simona Fermani, 1 Devis Montroni, 1 Andrea Migliori, 4 Alessandro Gradone, 4 Stefano Goffredo, 2,3 Gabriele Maoloni, 5 Jaime Gómez Morales, 6 Helmut Cölfen, 7 和 Giuseppe Falini 1,* 1 博洛尼亚大学化学系“Giacomo Ciamician”,via F. Selmi 2, 40126 Bologna, 意大利,电子邮件:giuseppe.falini@unibo.it。2 Fano Marine Center,viale Adriatico 1/N 61032 Fano,意大利。3 博洛尼亚大学生物、地质与环境科学系,via F. Selmi 3, 40126 Bologna, Italy。4 微电子与微系统研究所 (IMM) - 博洛尼亚 CNR 分部,地址:P. Gobetti 101,邮编:40129,博洛尼亚,意大利。5 Finproject S.p.A.,工厂阿斯科利皮切诺,Via Enrico Mattei,1-Zona Ind.le Campolungo,3100 阿斯科利皮切诺,意大利。6 晶体学研究实验室,安达卢西亚地球科学研究所(CSIC-UGR),Avda Las Palmeras 4,18100 Armilla(格拉纳达),西班牙。7 康斯坦茨大学化学系、物理化学,Universitätsstrasse 10,Box 714,D-78457 康斯坦茨,德国。
一项强大的企业社会责任承诺是其作为“积极采矿”企业社会责任路线图的一部分的最严格的负责采矿标准,Eramet已承诺将其所有采矿业务施加在基于IRMA的独立审计过程中(负责负责的采矿措施)标准。这是采矿部门的第一个国际标准,其全球方法,包括采矿业务的环境,社会和治理方面。通过与各个部门的利益相关者(包括社区,非政府组织和行业专家)的参与,Irma确保了整体观点,以解决各种关注点并促进整个采矿供应链中的透明度。Centenario网站在2022年完成了自我评估,并准备为2025年初的外部审核做准备。
抽象预测和插值井之间获得3D分布的渗透性是用于保护模拟的具有挑战性的任务。无碳酸盐储层中的高度异质性和成岩作用为准确预测提供了重要的障碍。此外,储层中存在核心和井记录数据之间的复杂关系。本研究提出了一种基于机器学习(ML)的新方法,以克服此类困难并建立强大的渗透性预测模型。这项研究的主要目的是开发一种基于ML的渗透性预测方法,以预测渗透率日志并填充预测的对数以获得储层的3D渗透率分布。该方法涉及将储层的间隔分组为流量单位(FUS),每个储层单位都有不同的岩石物理特性。概率密度函数用于研究井日志和FUS之间的关系,以选择可靠的模型预测的高加权输入特征。已实施了五种ML算法,包括线性回归(LR),多项式回归(PR),支持矢量回归(SVR),决策树(DET)和随机森林(RF),以将核心渗透性与有影响力的孔集成与有影响力的孔原木以预测渗透率。数据集随机分为训练和测试集,以评估开发模型的性能。对模型的超参数进行了调整,以提高模型的预测性能。为了预测渗透率日志,使用了两个包含整个重点毒的关键井来训练最准确的ML模型,以及其他井来测试性能。的结果表明,RF模型优于所有其他ML模型,并提供最准确的结果,其中调整后的确定系数(R 2 ADJ)在预测的渗透率和核心渗透率之间的训练集为0.87,对于测试集,平均绝对误差和平均正式误差(MSSE)的平均误差和0.32和0.19和0.19和0.19和0.19,均为0.82。据观察,当在包含整个储层FUS的井上训练RF模型时,它表现出较高的预测性能。这种方法有助于检测井的孔原木和渗透率之间的模式,并捕获储层的广泛渗透率分布。最终,通过高斯随机函数模拟地统计学方法填充了预测的渗透率日志,以构建储层的3D渗透率分布。研究成果将帮助ML的用户对适当的ML算法做出明智的选择,以在碳酸盐储层表征中使用,以进行更准确的通透性预测,并使用有限的可用数据进行更好的决策。
LIB利用率上升增加了对关键原材料的需求,例如锂(Li),Nickel(Ni)和Cobalt(CO)。但是,这些基本材料中的大多数受特定国家的监管。在刚果民主共和国开采了一半以上的钴矿石,并在中国进行了改进,约有80%的锂由澳大利亚和智利控制。[2]原材料和生产领域的不均匀分布引起了人们对全球供应链的关注。结果,锂和钴价格正在上涨和波动,与此同时,地理垄断可能导致地方政府垄断原材料的供应。[3]因此,从可持续性的角度来看,必须建立从消费液(电动汽车,固定储物电池和家用电器)中回收的关键伴侣的次要供应到期这种潜在短缺的严重性。另一方面,由于LIB通常可以平均使用10年,因此[3,4]到2030年,用过的Libs的数量预计将超过500万吨。[5] LIB的主要组成部分是阴极材料(Lini X Co Y Mn Z O 2(0 ), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).所有这些不同的成分都包含有害物质,并导致金属,灰尘,有机和氟污染。[6]垃圾填埋或焚化会损害生态系统。例如,一旦电极材料进入环境,来自阴极的金属离子,来自阳极的碳灰尘,强碱和来自电解质的重金属离子可能会引起严重的环境污染,危险等,包括提高土壤的pH值[7],[7]并产生毒性气体(HF,HF,HCL等)。此外,电池中的金属和电解质会损害人类健康。例如,钴可能通过地下水和其他通道进入人体,从而导致
Ediacaran-Cambrian后生动物辐射的驱动因素仍然不清楚,记录的保真度也是如此。We use a global age framework [580–510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes ( δ 13 C carb ) and global redox data [carbonate Uranium isotopes ( δ 238 U carb )].采样强度与总体平均重建的生物多样性> 535 MA相关,而二阶(〜10–80 mA)全球侵出性回归周期控制了不同海洋沉积岩的分布。Avalon组合的时间分布部分受到深入海洋硅质碎石岩石的时间和空间限制的记录。定义Avalon,White Sea和Cambrian组合的后代形态群的连续升高似乎与δ13C Carb Maxima处的全球浅海洋氧合事件相吻合,该事件先于主要海平面传播。虽然生物多样性的记录有偏见,但早期的后代辐射和氧合事件与主要的海平面周期有关。
• This milestone demonstrates IRIS Metals' progression from an exploration company to a near-term producer and supplier of lithium carbonate equivalent (LCE) • The Beecher project is licensed for production and well advanced towards a maiden mineral resource estimate expected in early 2025 • The conversion to lithium carbonate was done with ReElement, following the successful production of 6% spodumene concentrate (SC6) from IRIS' Beecher project in South Dakota ( refer to ASX Announcement dated 9 October 2024 ) • ReElement Technologies is a wholly owned subsidiary of American Resources Corporation (NASDAQ: AREC) • ReElement is advancing from demonstration operations to a commercial-scale critical minerals processing and refining plant • Following this successful conversion to LCE, IRIS Metals has signed a MOU with ReElement for further bulk testing and development of美国市场上的商业规模供应解决方案•该谅解备忘录使当事各方更接近虹膜,并成为第一个新的电池级碳酸锂的新近期国内供应商,该供应商可以提供完全减少通货膨胀的法案(IRA)符合通货膨胀的锂单位(IRA),向不断增长
碳酸盐(CACO3),该碳酸盐被海洋生物用于创建壳和骨骼。当这些生物死亡时,它们的遗体落在海底,形成石灰石和其他碳酸盐岩。3。俯冲和火山主义:构造过程导致其中一些碳酸盐沉积物为
在美国,一个锂盐水操作,带有相关的碳酸盐植物在内华达州银峰。国内和进口的碳酸锂,氯化锂和氢氧化锂直接在工业应用中消耗,并用作下游锂化合物的原料。在2020年,据估计,美国的锂消费量相当于元素锂含量的2,000公吨(T)[表1)[11,000吨碳酸盐含量(LCE)],主要在基于锂的电池,陶瓷,玻璃,玻璃,涂料,Grease,Pharmaceuticals和Polymer Products中。在2020年,进口到美国的锂化合物的毛重减少了6%,出口毛重降低了31%。碳酸锂进口液的平均年单位价值(包括药物级)比2019年下降了20%,氢氧化锂进口的平均年单位价值下降了35%。阿根廷和智利是进口碳酸锂的主要来源,智利和俄罗斯是进口氢氧化锂的主要来源(表2,3)。