摘要。细胞外聚合物物质(EPS)是许多上层和本元环境中重要的有机碳储层。EP的产生与植物和皮科普兰顿的生长密切相关。EPS通过阳离子的结合并用作最小值的成核位点在碳酸盐沉淀中起关键作用。水柱中碳酸钙沉淀的大规模发作(Whiting事件)已与蓝细菌开花有关,包括Synechococococococococococococococcus spp。触发这些降水事件的机制仍在争论中。我们提出的是,在指数和固定生长阶段产生的蓝细菌EPS在白色的形成中起着至关重要的作用。这项研究的目的是研究2个月蓝细菌生长的EPS产生,模仿开花。在Syechococcus spp的不同生长阶段检查了EP的产生和特征。使用各种技术,例如傅立叶变换红外(FT-IR)表格,以及比色和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS-PAGE)测定法。我们通过体外降水实验进一步评估了EPS在碳酸盐预紧次的预言中的潜在作用。在早期和晚期阶段产生的EPS含有比指数阶段产生的EPS中的更大的负电荷组。con,固定相EPS的较高Ca 2 +结合的依次导致形成了较大量的较小
降低负/正比(N/P比)的比率对于增加LI金属电池的能量密度(LMB)至关重要。通常,稳定的LI沉积具有高库仑效率(CE),可以通过基于醚的电解质轻松实现,但是低氧化稳定性限制了其在具有高压阴极的电池中的应用。在此处,我们在固体电解质相(SEI)(SEI)上进行了低温电子显微镜(冷冻-ee),深入的X射线光电态(XPS)和原子力显微镜(XPS)和原子力显微镜(AFM),该层以碳酸盐和醚电解液为基于碳酸盐的电解质和电子电气的良好的碳酸电解质和良好的SEI层的特征,从电解质组成。结果表明,SEI层中的有机成分决定了LMB的CE。进一步的理论计算表明,具有LI的碳酸盐分子具有高反应性的性质,导致有机丰富的SEI层具有低弹性模量。根据这些见解,我们通过调整电解质组成来提出碳酸盐电解质中晚期SEI层的设计方法。设计的SEI表现出具有密度无机内层的多层结构。因此,组装了一个4 V的全电池,并传递了760 WH/kg的高能量密度(基于阴极和阳极的重量计算),其长周期寿命为200个碳酸盐电解质的循环寿命为200个周期。
使用微生物诱导的碳酸钙沉淀(MICP)技术可以改善粉质粘土的机械性能,而粘性米粉可以增强微型活性,提高CACO 3降水的转化率,并有助于提高土壤强度。通过添加不同的老化米米浆液和胶结液体,以及无限制的抗压强度测试和扫描电子显微镜分析固体样品,进行了MICP固化测试。研究了粘性稻糊的强度生长机制,结果表明,粘性的米浆可以改善微生物的酶促活性,即,微生物可以产生更多的尿素,可以使尿素分解尿素,并且随着尿布的量增加,促尿液的浓度会增加ic的浓度,并增加了ic的浓度。当添加的煮熟的大米浆液的浓度为5%时,土壤的不受限制抗压强度最大。此外,扫描电子显微镜分析表明,冷却的粘性米浆可以用作产生大量无效的含碳酸的桥梁。钙原子被连接在一起形成有效的碳酸钙,碳酸钙填充了整个土壤的孔,增加了土壤的紧凑性并大大提高了其宏观机械强度。
注意:(1)碳酸锂; (2)使用CNY/USD的恒定汇率从CNY到USD = 0.16来源:Arthur D. Little,基准矿产智能,Het Financieele Dagblad,Trading Economics
INGREDIENTS Ground Corn, Dehulled Soybean Meal, Dried Whey, Soybean Hulls, Animal Fat, BHT (A Preservative), Feeding Oat Meal, Sodium Bentonite, Dicalcium Phosphate, Fish Meal, Calcium Carbonate, Lignin Sulfonate, Maltodextrin, Blood Meal, Salt, Calcium Propionate (A Preservative), Zinc Amino Acid Complex, Extracted Citric Acid Presscake, Copper Sulfate, Choline Chloride, Ferrous Sulfate, Zinc Sulfate, Manganese Sulfate, Calcium Iodate, Yeast Culture (Saccharomyces cerevisiae), Diatomaceous Earth, Zinc Oxide, L-Lysine, Methionine, Natural and Artificial Flavors, Biotin, d-alpha Tocopheryl Acetate (Source of Vitamin E), Calcium Pantothenate, Niacin Supplement, Vitamin A Supplement, Menadione Dimethylpyrimidinol Bisulfite, Pyridoxine Hydrochloride, Riboflavin Supplement, Folic Acid, Vitamin B12 Supplement, Vitamin D3 Supplement, Selenium Yeast, Dried Trichoderma reesei fermentation product, Dehydrated Pichia Pastoris Fermentation 提炼。
摘要:在锂离子电池运行期间,(电)化学侧反应发生在细胞内,可以促进或降解性能。这些复杂的反应在固体,液体和气相中产生副产品。在这三个阶段中研究副产品可以帮助优化电池寿命。要将测得的气相副产品与溶解在液相中的物种相关联,需要等于亨利法律常数等均衡礼节。本工作实施了一个压力衰减实验,以确定乙烯(C 2 H 4)(C 2 H 4)和二氧化碳(CO 2)之间的热力学平衡浓度,它们是在Li-Ion中通常产生的两种气体,其电池在3:7 wt/wt/wt/wt/wt的电池中均为1.2 m lipf 6:碳酸氟乙二烯(15:25:57:3 wt%总成分)。实验测量的压力衰减曲线适合分析溶解模型,并外推以预测平衡时的最终压力。然后使用= k C H 2 4 2.0×10 4 kPa的亨利定律常数和k co d 2 = 1.1×10 4 kpa的用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。 这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。 ■简介用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。■简介
进行了一系列实验室实验,以确定常用湿式添加剂是否会对Ucarcide®50抗菌剂的性能产生不利影响。表1显示了明矾,碳酸钙,高岭土,松香,淀粉,亚硫酸盐和二氧化钛对杀菌疗效25分(PPM)活性Slimicide的杀菌效率。所有添加剂均以0.5%的浓度测试,碳酸钙(0.1%)和亚硫酸盐(0.005%)。使用纯铜绿假单胞菌菌株在pH 7下进行实验。结果比较了在添加剂存在下与单独含有纤维化剂的样品中活性纤维化的疗效。一小时后,所有样品的微生物水平降低了99%。三个小时后,还原基本上是完整的,这表明在存在这些化学物质的情况下,Ucarcide®50抗菌剂的有效性。
在这项研究中,我们对在铜(CU)冶炼过程中生产的商业FGD石膏进行了全面检查,并通过探索这些金属不症状的分区和命运来研究其作为钙(CA)富含钙(CA)的材料的潜在用途。所得的碳化端产品显示出71.1%的碳酸钙(CACO 3)含量,具有相对较低的CO 2转化率,这可能归因于商业FGD-GYPSUM中金属杂质的存在。这些金属杂质中的大多数是碳酸过程的输入,源自母体FGD-gypsum矩阵。这导致FGD石膏内的离子强度增加,可能阻碍二氧化碳(CO 2)从气相到水相扩散。在CO 2转化的各个阶段,主要,次要和微量元素的形成分配和检查使我们能够提出四种影响碳化效率的潜在反应途径:(i)金属氧化物的形成,(ii)金属氧化物和氧化羟化物的产生,(III)(III)(iii)金属成分元素的开发(III)元素的开发(IIV)和(IIV)的发展。商业fgd-gypsum适合在非危害废物垃圾填埋场接受。但是,必须强调商业FGD-GYPSUM中的浸出值超过惰性范围和非危害废物标准。尽管碳酸盐端产品的大多数重金属浸出值保持在非危害限制以下,但从碳酸盐端产品中释放一些重金属浸出物可能会限制这些材料的重用选择。
#顾问摘要气候变化和全球变暖是与增加全球二氧化碳排放相关的主要环境挑战。此外,全世界和他海湾地区尤其遭受了清洁水源的稀缺。因此,本研究的重点是通过应用矿化过程解决这两个关键问题。CAO和MGO是对碳酸过程产生显着贡献的二价阳离子之一。CO,MGO和CAO之间的碳酸反应产生碳酸钙(CACO3)和碳酸镁(MGCO3)等碳酸盐矿物质。因此,可以将含有大量CA和MG离子的倒置单元从反渗透单元中出来。在这项研究中,已经研究了盐水浓度,接触时间,温度和压力对盐水矿化的影响。实验的结果表明,二氧化碳矿化速率主要取决于三个因素,即温度,浓度和时间,不主要取决于压力。通过实验,很明显,矿化过程的最佳条件是温度为70°C,实验时间为3小时。还研究了二氧化碳矿化对电容性,电容性,阻抗,pH,EC,指数(Brix)和盐度的影响。引言气候变化我们时代最严重的环境挑战之一主要是由于全球CO 2排放的增加。要在海湾提供纯净水,需要处理海水。另一方面,海湾地区正遭受纯净水源的稀缺性。海水处理过程通过蒸馏和膜分离去除盐,以获取水可饮用并出于工业目的而进行。大多数脱盐海水的公司都位于电站附近,因为淡化过程会消耗大量能源,因此这导致了二氧化碳增加。人类呼吸受到大气中二氧化碳比例的持续增加的负面影响。呼吸道二氧化碳的毒性发生在一个人呼吸高二氧化碳时,但是当人们永久暴露于二氧化碳时,尚不清楚什么水平会影响人类健康。血液样本是从住在工厂附近的人们那里采集的,其中指出,思维能力降低了,每百万人为600份的人的健康症状用于短期暴露。因此,停止二氧化碳排放或从海水淡化植物中取出它很重要。可以去除或减少二氧化碳的方法之一是矿化。以这种方式,二氧化碳与镁和钙反应形成碳酸钙和碳酸镁,当反应发生在水中时,二氧化碳矿化速率会增加。另一个
经过定义的热预处理。一方面,这有助于从电池电池的电解质,粘合剂和分离器中去除有机物质。另一方面,它用于通过靶向过程参数调整,用于电池中包含的锂的相变。锂的目标相是碳酸锂,它是由持续还原反应形成的。随后,为了选择性地从主动质量中恢复锂,进行了用去离子水的洗涤过程。在此过程中,形成的碳酸锂溶解。但是,由于在热预处理期间也形成了氟化锂,具体取决于所选的过程参数,因此一定量的该盐也将其带入溶液中。从溶液中回收锂盐产物,例如,通过蒸发水。用于评估热预处理和浸出的过程参数,以及评估产生的产物的评估,不仅纯度,而且存在的lihium化合物类型都是决定性的。