组蛋白H3K27甲基化的表观遗传调节最近已成为替代免疫调节的M2样巨噬细胞极化期间的关键步骤。已知会影响心肌梗塞后心脏修复(MI)。 我们假设负责H3K27甲基化的EZH2可以在此过程中充当表观遗传检查点调节剂。 我们在单核细胞分化为体外的M2巨噬细胞中,以及在体外的M2巨噬细胞中分化为M2巨噬细胞,以及在免疫后的巨噬细胞中,在体外阶段中,表观遗传酶的定位是表观遗传酶的假定胞质不活跃定位。 此外,我们表明,使用GSK-343的药理EZH2抑制分析了二价基因启动子的H3K27甲基化,从而增强其表达以促进人类单核细胞修复功能。 与这种保护作用相一致,GSK-343治疗加速了心脏炎症分辨率,可防止体内MI小鼠的梗死扩张和随后的心脏功能障碍。 总而言之,我们的研究表明,对心脏效果的药理学表观遗传学调节可能会有望限制MI后限制心脏不良改造。组蛋白H3K27甲基化的表观遗传调节最近已成为替代免疫调节的M2样巨噬细胞极化期间的关键步骤。已知会影响心肌梗塞后心脏修复(MI)。我们假设负责H3K27甲基化的EZH2可以在此过程中充当表观遗传检查点调节剂。我们在单核细胞分化为体外的M2巨噬细胞中,以及在体外的M2巨噬细胞中分化为M2巨噬细胞,以及在免疫后的巨噬细胞中,在体外阶段中,表观遗传酶的定位是表观遗传酶的假定胞质不活跃定位。此外,我们表明,使用GSK-343的药理EZH2抑制分析了二价基因启动子的H3K27甲基化,从而增强其表达以促进人类单核细胞修复功能。与这种保护作用相一致,GSK-343治疗加速了心脏炎症分辨率,可防止体内MI小鼠的梗死扩张和随后的心脏功能障碍。总而言之,我们的研究表明,对心脏效果的药理学表观遗传学调节可能会有望限制MI后限制心脏不良改造。
YAP1(是相关的蛋白1)是河马SIG NALING途径中至关重要的转录共激活因子,主要通过磷酸化调节。当磷酸化时,YAP1通常保留在细胞质中,从而防止其转移到核向Acti vate转录中。因此,抑制YAP1磷酸化可以增加其核浓度,增强其转录活性并影响特定靶基因的表达[3]。研究表明,激活YAP1支持心肌细胞的生长和生存,可能会缓解心肌肥大和HF [4,5]。升高的YAP1水平还会导致Akt磷酸化增加,从而抑制GSK3β,从而增强了FOXM1的表达并有助于心肌细胞肥大和纤维化[6]。在那里,靶向YAP1激活可能是逆转病理心肌肥大的至关重要方法。
背景:高血压是病理左心室肥大的最常见原因,这种病因与高血压患者的心力衰竭和心血管衰弱有关。众所周知,与现有治疗相关的高血压性心力衰竭的疾病负担仍然没有减弱。控制高血压左心室肥大的新疗法需要减速或防止心力衰竭发展。我们先前的研究表明,肉桂酸是一种天然存在的单羧酸,可减轻横向主动脉收缩诱导的压力过载介导的心脏肥大。但是,肉桂酸是否有效控制高血压左心室肥大仍然未知。血管紧张素II(ANG II)在驱动高血压左心室肥大的发病机理中起关键作用。因此,当前的工作研究了在ANG II介导的高血压左心室肥大的背景下,肉桂酸的治疗潜力和药理机制。
必需高血压(HTN)升级心脏,脑和肾脏事件的风险(1)。2010年,HTN的全球患病率约为14亿,预计到2025年将增加到16亿(2)。htn在全球医疗系统上造成了重大负担,并成为全球心血管疾病(CVD)和总体死亡率的主要修改风险因素(3,4)。贫血影响了全球人口的大约三分之一,导致神经系统发展受损,工作效率降低以及发病率和死亡率提高(5)。贫血减少组织氧递送,引起心血管反应,可能导致损伤,表现为心脏增大,左心室肥大(LVH)和动脉重塑(6)。贫血是HTN患者心血管不良结局的重要危险因素。慢性贫血增加了预紧力,减少后负载并提高心输出量,可能导致适应不良的LVH,这是不良后果和整体死亡率的已知危险因素(7,8)。随着老化的衰老,HTN的发病率上升,使老年患者更容易受到贫血的合并症。尽管这两种情况都可以独立损害心血管系统(6,9,10),但它们的组合可能会恶化心脏功能障碍(11)。尽管它是该人群中死亡率的独立预测指标的重要性(12),但贫血经常被忽视,从而低估了其对心脏健康的影响,尤其是HTN患者的心脏结构和功能。据我们所知,没有研究使用CMR功能跟踪(CMR-FT)技术来研究心脏磁共振(CMR)在心脏病学中对于其独特而错综复杂的成像技术至关重要,通过提供精确测量LV体积和功能,组织表征和疤痕定量,可以进行彻底的评估(13)。CMR对于检测与HTN相关的微妙变化特别有价值,包括使用心肌功能跟踪的早期心肌功能障碍,这可能会彻底改变HTN患者的LV风险评估(14)。多项已发表的研究表明,糖尿病患者,慢性肾脏疾病(CKD)或CVD患者的贫血与LV舒张功能障碍之间存在联系,但发现不一致(15)。
图 1:使用 M/EEG 和 ECG 研究的非周期性活动的文献分析。A) 时域和频域中不同类型非周期性活动的说明。BC) 我们使用 LISC 21(一个用于收集和分析科学文献的软件包)分析了 PubMed 上索引的 489 篇摘要。B) 该分析表明,非周期性活动的变化与神经和心脏活动测量中的相似特征、状态和疾病有关。C) 我们进一步注意到,在摘要中提到心脏和皮质非周期性活动的研究(N=4)有微小的重叠。然而,这些研究都没有考虑心脏非周期性活动对皮质非周期性活动测量的混杂影响。D) 我们还发现,2020 年代与神经非周期性活动研究相关的研究急剧增加,凸显了神经科学界对该主题的当前兴趣。 EF) 我们进一步下载并分析了免费提供的 M/EEG 研究全文,这些研究调查非周期性活动,以了解心脏活动的处理程度和处理方式。该分析显示,只有 17.1% 的 EEG 研究消除了心脏活动,只有 16.5% 的研究测量了 ECG(对于 MEG,45.9% 消除了心脏活动;31.1% 提到测量了 ECG)。我们进一步希望确定哪些伪影抑制方法最常用于消除心脏活动,例如独立成分分析 (ICA 22 )、奇异值分解 (SVD 23 )、信号空间分离 (SSS 24 )、信号空间投影 (SSP 25 ) 和去噪源分离 (DSS 26 )。我们发现 EEG 和 MEG 记录中最常用的方法是独立成分分析 (ICA)。GH) 任意选择以前的研究(N = 60)表明,大量不同的频率范围用于研究非周期性活动。虽然大量研究调查了~0.1-50 Hz 之间的范围
到2030年达到11%。尽管通过优化疗法和预防作用取得了重大改善,但该疾病的死亡率仍然很高,占卫生部门总支出的1-2%。在近年来可用的各种新疗法中,心脏重新同步疗法(CRT)似乎是一种非常原始的技术,用于通过特定区域的直接心肌刺激来纠正这些失败心脏的某些机械异常。从CRT的起点开始,对异步的鉴定是基于临床医生在标准心电图(ECG)上测得的电室(QRS)激活的持续时间。但是,更高级的评估模型使得更好地了解
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by-nc-nd/4。0/。
心肌血流量 (MBF) 是心肌灌注的关键指标,通常通过其他临床测试(如压力下的动态 CT 灌注)进行评估。这项研究引入了一种数字孪生,旨在通过使用常规 CT 图像和临床测量数据预测 MBF 来增强冠状动脉疾病的诊断。数字孪生采用人工智能方法重建冠状动脉和心肌几何形状,并集成了一个计算模型,该模型具有 3D 冠状动脉和三室心肌模型,并使用来自六名代表性患者的数据进行盲校准。对另外 28 名患者的验证显示 MBF 预测与实验和临床测量一致。混淆矩阵分析评估了双胞胎对高危患者(平均 MBF < 230 ml/min/100g)与非高危患者进行分类的能力,召回率为 0.77,精确度和准确度为 0.72。这项工作代表
了解某些动物如何能够再生其心脏将提供急需的见解,以了解如何在人类中引起该过程,以扭转心肌梗塞造成的损害。目前,越来越明显的是,心脏间质细胞在心脏再生过程中起着至关重要的作用。为了了解在此过程中间质细胞的行为,我们对斑马鱼的再生进行了单细胞RNA测序。使用免疫组织化学,化学抑制和新型转基因动物的结合,我们能够研究心脏再生中细胞类型特异性机制的作用。这种方法使我们能够在间质细胞种群中确定许多重要的再生过程。在这里,我们提供了详细的见解,了解间质细胞在心脏再生过程中的行为方式,这将有助于我们对人类最终如何诱导该过程的理解。
身体内部信号,如心脏 - 呼吸信号,不断从身体传输到大脑,确保生物体的自我调节。皮层下大脑区域对于这种身体 - 大脑交流尤为重要,但它们对人类内部身体信号的处理在很大程度上是未知的。通过研究人类三个皮层下区域(两个丘脑核和一个丘脑底核)中单个神经元的活动,我们发现大部分神经元受到心跳、呼吸或心动周期持续时间的调节,而这些信号的普遍性在皮层控制区域中大大降低。我们的研究表明,重要的心脏 - 呼吸信号在这些皮层下区域是如何被广泛处理的,扩展了我们对它们在身体 - 大脑交流中的作用的理解。