Impassion130是一项III期随机试验,在MTNBC中研究了Atezolizumab和Nab-Paclitaxel [8,9]。共同主要终点包括无进展生存(PFS)和OS来治疗(ITT)人群。研究设计遵循层次结构,仅当在ITT人群中观察到OS的显着改善时,才允许在PD-L1-阳性人群中评估OS。在ITT人群中,中位OS为21.0个月(95%CI 19.0–23.4个月),atezolizumab和Nab-paclitaxel为18.7个月(95%CI 16.9-20.8个月),安慰剂和NAB-PACLITAXEL(HR 0.87; 95%CI; 95%CI; 95%; 95%CI; 95%; 95%; 95%; 95%; 95%; p = = 0.07; p = 0.02; p = 0.02;Exploratory analysis in the PD-L1-positive subgroup had a median OS of 25.4 months (95% CI 19.6–30.7 months) in the atezolizumab and nab-paclitaxel arm and 17.9 months (95%, 13.6–20.3 months) in the placebo arm (HR 0.67; 95% CI 0.53–0.86).根据Impassion130试验,2019年3月,食品药品监督管理局(FDA)批准了对Atezolizumab与化学疗法结合的加速批准。在Impassion131中未达到PD-L1阳性MTNBC患者PFS优势的主要终点(HR 0.82; 95%CI 0.60-1.1.12; P = 0.20)。此外,在PD-L1阳性或ITT患者中均未观察到OS益处[10]。由于Impassion131令人失望的结果,Roche撤回了Atezolizumab的美国MTNBC指示[11]。
人工智能是指机器执行通常需要人类智能才能完成的操作的能力,例如语音识别、决策或解决问题。人工智能系统可以接受训练,从数据中学习并随着时间的推移不断进化,从而使它们能够以高度的准确性和效率执行复杂的任务。阅读更多……… hƩps://www.teamupai.org/
a 转化神经科学,卢森堡大学系统生物医学中心 (LCSB),卢森堡,卢森堡 b 牛津大学生理学、解剖学和遗传学系,英国 c 牛津大学 Kavli 纳米科学发现研究所,英国 d 土耳其巴勒克埃西尔大学医学院医学生物学系 e 发育和细胞生物学,卢森堡大学系统生物医学中心 (LCSB),卢森堡,卢森堡 f 转化神经变性科“Albrecht-Kossel”,罗斯托克大学医学中心神经病学系,罗斯托克,德国 g 分子和功能神经生物学,卢森堡大学系统生物医学中心 (LCSB),卢森堡,卢森堡 h 吕贝克大学神经遗传学研究所,吕贝克,德国 i 卢森堡医院中心,卢森堡 j 横向转化医学,卢森堡健康研究所 (LIH),卢森堡
使用 SNMP 协议访问路由器 2021 年,APT28 使用基础设施伪装简单网络管理协议 (SNMP) 访问全球的思科路由器。其中包括少数位于欧洲的路由器、美国政府机构和大约 250 名乌克兰受害者。SNMP 旨在允许网络管理员远程监控和配置网络设备,但它也可能被滥用来获取敏感的网络信息,如果存在漏洞,还可以利用设备渗透网络。许多软件工具可以使用 SNMP 扫描整个网络,这意味着不良配置(例如使用默认或易于猜测的社区字符串)可能会使网络容易受到攻击。弱的 SNMP 社区字符串(包括默认的“public”)允许 APT28 获取路由器信息的访问权限。APT28 发送了额外的 SNMP 命令来枚举路由器接口。[T1078.001] 被入侵的路由器配置为接受 SNMP v2 请求。 SNMP v2 不支持加密,因此所有数据(包括社区字符串)都是以未加密形式发送的。利用 CVE-2017-6742 APT28 利用了漏洞 CVE-2017-6742(Cisco Bug ID:CSCve54313)[T1190]。思科于 2017 年 6 月 29 日首次公布了此漏洞,并发布了修补软件。思科发布的公告提供了解决方法,例如仅限制受信任主机对 SNMP 的访问,或禁用多个 SNMP 管理信息库 (MIB)。恶意软件部署
Spean Bridge,Roy Bridge和Achnacarry Scio(苏格兰慈善组织)成立于2012年,当时社区从本地产生的微型水电计划受益。其初始收入是适度的,因为计划比预期的要慢。但是,到2020年,我们的SCIO已经开始从Nevis Range的两个水电计划和Allt Mhuic获得长期的社区利益,以期预期的一生,以及SSE Windfarm在Stronelairg的SSE Windfarm,后者仅三年。偶尔,为了表彰SCIO在共同大流行的最具挑战性的几个月中,从2020 - 21年获得了个人和当地利益相关者的欢迎以及苏格兰政府支持社区基金的捐款。
摘要 量子计算机面临的一个主要挑战是可扩展的量子门同时执行。在囚禁离子量子计算机中解决这一问题的一种方法是基于静态磁场梯度和全局微波场实现量子门。在本文中,我们介绍了表面离子阱的制造方法,其中集成的铜载流导线嵌入在离子阱电极下方的基板内,能够产生高磁场梯度。在室温下测得的铜层薄层电阻为 1.12 m Ω /sq,足够低,可以实现复杂的设计,而不会在大电流下产生过多的功率耗散导致热失控。在 40 K 的温度下,薄层电阻降至 20.9 μ Ω /sq,残余电阻比的下限为 100。可以施加 13 A 的连续电流,导致在离子位置处模拟磁场梯度为 144 T m − 1,对于我们设计中的特定反平行线对,该位置距离陷阱表面 125 μ m。
在欧洲市场上销售的基因编辑生物及其衍生食品和饲料产品属于 2001/18/EC 指令的范围。因此,专门检测和量化它们的可能性已成为优先事项。为此,基于 PCR 的方法(例如实时 PCR 和数字液滴 PCR)有望适用于基因编辑生物携带的单个变异点,即使在技术层面上可能具有挑战性。但是,还可能遇到与结果解释相关的其他问题。事实上,考虑到它可能通过自然或育种计划传播,这种单一变异的存在并不能自动证明基因编辑生物的存在。为了克服这一关键问题,我们提出了一个通用工作流程来开发和验证一种针对基因编辑生物的 PCR 方法,以针对其单个变异点。首先,基于计算机模拟分析,评估技术设计基于 PCR 的方法以及使用其单个变异点区分基因编辑生物的可能性。如果确认了这些参数,则将根据转基因检测的最低性能要求测试所开发的 PCR 方法的性能。通过开发一种专门针对携带单核苷酸插入的基因编辑大米的 2 重数字液滴 PCR 方法,成功地说明了所提出的一般工作流程的使用。因此,所提出的工作流程被视为支持主管部门进行食品和饲料可追溯性的关键工具。
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
压力超过 25 kPa 但不大于 70 kPa,应在船舶的船级符号中增加识别标记 highPRESS(pressure),其中以 kPa 为单位的最大允许蒸气压力用括号标明,例如 highPRESS(50) 。为了给船舶授予 highPRESS(pressure) 标记,应根据 4.1 提交文件,确认满足第 IV 部分“货物围护”第 24.1.4 和 24.4 条、第 VI 部分“系统和管道”第 3.16.6 条和第 VIII 部分“仪器和自动化系统”第 4.1 条规定的要求。
2.2.12 如果 LG 运输船的薄膜型 LNG 货舱能够承受 25kPa 以上、70kPa 以下的蒸气压力,则应在船舶附加标志中加注识别标志 highPRESS(pressure),并在括号中标明最大允许蒸气压力(kPa),例如 highPRESS(50)。为授予船舶 highPRESS(pressure) 标志,应根据 4.1 提交文件,确认满足第 IV 部分“货物围护”第 24.1.4 和 24.4 条、第 VI 部分“系统和管道”第 3.16.6 条和第 VIII 部分“仪器和自动化系统”第 4.1 条规定的要求。