化学系 - 慕尼黑大学技术大学。4,85748 GARCHING b。德国美钦。 电话:+49(89)289-13831;电子邮件:angela.casini@tum.de,orcid ID:http://orcid.org/0000-0000-0003-1599-9542; URL:https://wwwt3.ch.tum.de/en/faculty/staff/astive-members/c/prof-dr-dr-dr-dr-dr-dr-dr-dr-dr-angela-casini/出生日期:25 - 1973年3月25日至1973年,国籍,国籍:意大利教育摘要和职业安吉拉·卡西尼(Angela Casini自2019年以来。 自2021年以来,她担任药品放射化学临时主席,并且是慕尼黑数据科学研究所(MDSI)的核心成员。 她于2004年在佛罗伦萨大学(意大利)完成了化学博士学位,并作为由瑞士国家科学基金会(Ambizione计划)资助的首席调查员它所搬到了EPFL(瑞士)。 在2011年至2015年之间,她曾担任格罗宁根大学(荷兰)的助理教授,拥有罗莎琳德·富兰克林(Rosalind Franklin)奖学金。 在2015年至2019年之间,她还担任研究生(英国)化学学院的硕士学位主席兼董事,然后才担任目前在TUM的职位。 她的研究兴趣是药用无机和生物无机化学。 具体而言,对金属离子在生物系统中的作用以及有机金属抗癌剂的作用机理的研究是她小组中的积极研究主题。 此外,在化学生物学,药物递送和医学的各个领域还探索了金属化合物和超分子配位络合物的新型应用。4,85748 GARCHING b。德国美钦。电话:+49(89)289-13831;电子邮件:angela.casini@tum.de,orcid ID:http://orcid.org/0000-0000-0003-1599-9542; URL:https://wwwt3.ch.tum.de/en/faculty/staff/astive-members/c/prof-dr-dr-dr-dr-dr-dr-dr-dr-dr-angela-casini/出生日期:25 - 1973年3月25日至1973年,国籍,国籍:意大利教育摘要和职业安吉拉·卡西尼(Angela Casini自2019年以来。自2021年以来,她担任药品放射化学临时主席,并且是慕尼黑数据科学研究所(MDSI)的核心成员。她于2004年在佛罗伦萨大学(意大利)完成了化学博士学位,并作为由瑞士国家科学基金会(Ambizione计划)资助的首席调查员它所搬到了EPFL(瑞士)。在2011年至2015年之间,她曾担任格罗宁根大学(荷兰)的助理教授,拥有罗莎琳德·富兰克林(Rosalind Franklin)奖学金。在2015年至2019年之间,她还担任研究生(英国)化学学院的硕士学位主席兼董事,然后才担任目前在TUM的职位。她的研究兴趣是药用无机和生物无机化学。具体而言,对金属离子在生物系统中的作用以及有机金属抗癌剂的作用机理的研究是她小组中的积极研究主题。此外,在化学生物学,药物递送和医学的各个领域还探索了金属化合物和超分子配位络合物的新型应用。在这些领域中,她撰写了270多个出版物(包括12本书章节),H索引为72。自2021年以来,在寻找新型超分子无机材料时,她协调了4年的TUM创新网络(大约400万欧元投资)“人工智能供电的多功能材料设计”(Artemis)。该网络专注于使用机器学习开发新的材料进行能源研究和再生医学。
研究亮点•领导手性共轭有机薄膜材料的发展(例如自然化学。2022)及其在技术应用中的使用。这些包括手性材料以控制发出的(手性)极化状态(adv。mater。2013,JACS 2016,自然光子。2023)或检测到(例如自然光子。2013,Adv。 mater。 2021)在设备中,所有这些都以专家分子设计,合成和基本分析为基础(例如 自然通讯。 2020)。 •开创了高性能异性偶像偶像照片的开发(例如 JACS 2014,JACS 2017)开始在许多光学添加的应用程序中替换Azobenzenes,包括Fuchter Group和合作者展示的应用:体内照明学(JACS 2020)(JACS 2020)(JACS 2020),储能材料,2020年,JACS 2020,JACS 2021,JACS 2021,JACS,JACS 202222233 33 33)和SUPRAMORec 33 33.233 33.233 33.2222223.233 33.22222223.233。 •药物化学方面的领导者致力于转录调节目标。 代表性的例子包括验证表观遗传疗法的化学支架(例如 自然化学。 bio。 2013),识别疟疾表观遗传治疗策略(例如 PNAS 2012,Nature Med。 2014,ACS Infect。 dis。 2018),以及通过核受体抑制的一种新的免疫肿瘤学方法(WO2018158587,WO2018178666,WO2020002911)。 •从新颖的筛查方法(自然通讯2013,Adv。mater。2021)在设备中,所有这些都以专家分子设计,合成和基本分析为基础(例如自然通讯。2020)。•开创了高性能异性偶像偶像照片的开发(例如JACS 2014,JACS 2017)开始在许多光学添加的应用程序中替换Azobenzenes,包括Fuchter Group和合作者展示的应用:体内照明学(JACS 2020)(JACS 2020)(JACS 2020),储能材料,2020年,JACS 2020,JACS 2021,JACS 2021,JACS,JACS 202222233 33 33)和SUPRAMORec 33 33.233 33.233 33.2222223.233 33.22222223.233。•药物化学方面的领导者致力于转录调节目标。代表性的例子包括验证表观遗传疗法的化学支架(例如自然化学。bio。2013),识别疟疾表观遗传治疗策略(例如PNAS 2012,Nature Med。 2014,ACS Infect。 dis。 2018),以及通过核受体抑制的一种新的免疫肿瘤学方法(WO2018158587,WO2018178666,WO2020002911)。 •从新颖的筛查方法(自然通讯PNAS 2012,Nature Med。2014,ACS Infect。dis。2018),以及通过核受体抑制的一种新的免疫肿瘤学方法(WO2018158587,WO2018178666,WO2020002911)。•从新颖的筛查方法(自然通讯2018)开发了几种癌症治疗的临床候选者,包括GCN2和CDK7(摩尔癌症。2018)。后一个候选人,现在称为Samuraciclib,已进入多种癌症的II期临床评估,并已快速跟踪FDA。
血管激活,重塑和屏障功能对炎症性肠道疾病。int J Mol Sci。2023; 24:5517。40。Qiao L,Yan S,Dou X等。 生物硒纳米颗粒通过调节内质网应激介导的线粒体来调节近端上皮屏障损伤。 氧化MED细胞寿命。 2022; 2022:3982613。 41。 Antoni L,Nuding S,Wehkamp J,Stange EF。 肠道肠道疾病中的肠道。 世界J胃烯醇。 2014; 20:1165-1179。 42。 杰克逊DN,Theiss al。 肠道细菌在睾丸炎症和癌症中向线粒体发出信号。 肠道微生物。 2020; 11:285-304。 43。 TOH TS,Chong CW,Lim Sy等。 肠道疾病中的肠道微生物组:荟萃分析的新见解。 帕金森主义关系疾病。 2022; 94:1-9。 44。 Vancamelbeke M,VermeireS。肠道屏障:在健康和疾病中的基础作用。 专家Rev Gastroenterol Hepatol。 2017; 11:821-834。 45。 Casini A,Mancinelli R,Mammola CL等。 alpha- 的分布Qiao L,Yan S,Dou X等。生物硒纳米颗粒通过调节内质网应激介导的线粒体来调节近端上皮屏障损伤。氧化MED细胞寿命。2022; 2022:3982613。41。Antoni L,Nuding S,Wehkamp J,Stange EF。肠道肠道疾病中的肠道。世界J胃烯醇。2014; 20:1165-1179。42。杰克逊DN,Theiss al。肠道细菌在睾丸炎症和癌症中向线粒体发出信号。肠道微生物。2020; 11:285-304。43。TOH TS,Chong CW,Lim Sy等。 肠道疾病中的肠道微生物组:荟萃分析的新见解。 帕金森主义关系疾病。 2022; 94:1-9。 44。 Vancamelbeke M,VermeireS。肠道屏障:在健康和疾病中的基础作用。 专家Rev Gastroenterol Hepatol。 2017; 11:821-834。 45。 Casini A,Mancinelli R,Mammola CL等。 alpha- 的分布TOH TS,Chong CW,Lim Sy等。肠道疾病中的肠道微生物组:荟萃分析的新见解。帕金森主义关系疾病。2022; 94:1-9。44。Vancamelbeke M,VermeireS。肠道屏障:在健康和疾病中的基础作用。专家Rev Gastroenterol Hepatol。2017; 11:821-834。 45。 Casini A,Mancinelli R,Mammola CL等。 alpha- 的分布2017; 11:821-834。45。Casini A,Mancinelli R,Mammola CL等。alpha-
vimercate(Monza Brianza),2024年6月3日 - 从销售代理公司到能够与合作伙伴保持合同关系的全面运营社会:这是V-Valley的组织模型的重要变化,V-Valley,Esprinet Group Ensity侧重于高级解决方案的分布。成立于2011年,作为ESPRINET的一个部门,目的是加速公司和公共管理的数字化过程,多年来,由于不断增长的客户和供应商的投资组合,成为了新地理位置的战略公司,并创建了新的能力,并且能够创建新地理位置,并且能够创造出新的能力,并且能够成为不断增长的产品组合,因此能够在南欧的高价值增值解决方案中成为关键参与者。这种过渡与集团的战略完全一致,该战略设想了基于多家补充公司Esprinet,V -Valley和Zeliatech的商业模式,旨在满足不同市场的特定需求。通过新的组织模型,V-Valley帮助合作伙伴面对市场的挑战,提供更大的专注力和专业化,更灵活的灵活性以及基本工具,以充分利用新技术趋势提供的商机。V-Valley relies on a team of professionals located in the Vimercate and Ravenna offices - a real cybersecurity hub - the Competence Centre, a capillary presence throughout the territory through a dedicated sales network, the V-Truck - the travelling demo center, a new customized B2B e-commerce site, and the Cloud Marketplace, the proprietary platform that has more than 100K subscriptions and allows the creation of tailored cloud体系结构。关于V-Valley它还将继续利用集团的战略资产,例如公共部门市场部门和Esprifinance Financial产品。“我们通过拦截ICT革命最具破坏性的趋势之一,企业和公共管理的数字化来开始V-Valley项目。多年来,我们为合作伙伴提供了有关数据中心,网络安全,云和统一沟通以及我们专家的知识的最佳解决方案。今天,我们正在为历史上的一个新篇章开放,这是一个令人兴奋的加速和成长阶段,这是由人工智能等最新技术产生的机会驱动的,始终可供合作伙伴增强其业务。”
市镇街道名称街道代码类型位置初始分类界定第一个分类的第二分类4通过dell'Artigianato在1 4的内部通过Delle Acacie 10001私人道路,完全在1 4内通过Borghetto di Sopra 10003 Municipal 10003 INSIEN INCERIPAL 1 4通过Borghetto Di Sotto Di Sotto 10004 Municipal Rocal Inside 140004 000 000 000 000 000 000 HOUNIP内部1 4通过Calzolara 10007 Municipal Road部分1参见特殊Planimetry-All1 2 4通过Canaletta 10008 Road从1到3/b 2的部分城市10009在1 4内完全通过Carnevali Municipal Road在1 4的内部,在1 4内通过CA'Rossa 10011 Municipal Road 2 4在Casini 10012 Municipal Road中完全通过1001 castelfranco-niric-niric-niriciip of-Municip of-Municip of-Municip-nimip of-Municip- Onvallazione North 10015省路------------ 4通过CirconVallazione South 10016 Municipal Road完全通过coldine在1 4中10017 MUNICIPAL ROAD OUTSIDE 2 4 VIA CONTESSA MATILDE 10018 MUNICIPAL ROAD COMPLETE_INSIDE 1 4 VIA DE AMICIS 10019 MUNICIPAL ROAD COMPLETE_INSIDE 1 4 VIA DE GASPERI 10020 MUNICIPAL ROAD COMPLETE_INSIDE 1 4 VIA DE MARIA 10021 MUNICIPAL ROAD COMPLETE_INSIDE 1 4 VIA FIORINI 10022 MUNICIPAL ROAD COMPLETE_INSIDE 1 4 VIA DELLA GABELLA 10023 PRIVATE ROAD COMPLETE_INSIDE 1 4 VIA GALVANA 10024 MUNICIPAL ROAD OUTSIDE 2 4 VIA GANDOLFI 10025 MUNICIPAL ROAD COMPLETE_INSIDE 1 4 PIAZZA GARIBALDI 10026市政路完整1 4通过Cassola 10027省路--- 4通过Giovanni da Bazzano 10028 Municipal Road complete_inside 1 4 Viale Gramsci 10029 Municipal Road完整1 4通过Kennedy 100通过肯尼迪10033 Ione 10033 Municipal Road 2 4 4 Viale Dei Martiri 10034省路------------------------- 4通过Matteotti Matteotti 10035 Municipal Road完整_Inside 1 4通过Mazzini 10036全部1 4通过Minelli 10037 Municipal Road完全在1 4内通过Molino 10038 Municipal Road在1 4内部通过Montebudello 10039 Municipal Road从开始到3/B,从开始到3/B,从开始到32 2 4开始,从Monteveglio 10040 and Muniiiiiiiiiiip- 4从一开始到14 2 4,经Motta 10042 Municipal Road 2 4郊外的Muzza 10043 Municipal Road完全通过Muzza Spadetta在1 4内部。 10044 部分市政道路 1 参见特别规划附件 4 2
[1] Harald Köpping Athanasopoulos。2019 年。《月球村和太空 4.0:‘开放概念’是开展太空活动的新方式吗?》太空政策 49(2019 年),101323。[2] Edward Bachelder、David H Klyde、Noah Brickman、Sofia Apreleva 和 Bruce Cogan。2013 年。融合现实以增强飞行测试能力。在 AIAA 大气飞行力学 (AFM) 会议上。5162。[3] Leonie Becker、Tommy Nilsson、Paul Demedeiros 和 Flavie Rometsch。2023 年。增强现实服务于人类在月球上的操作:来自虚拟试验台的见解。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1-8。 [4] Loredana Bessone、Francesco Sauro、Matthias Maurer 和 Matthias Piens。2018 年。月球及以外地区实地地质探索的测试技术和操作概念:欧空局 PANGAEA-X 活动。载于欧洲地球物理联合会大会摘要。4013 年。[5] D Budzyń、H Stevenin、Matthias Maurer、F Sauro 和 L Bessone。2018 年。欧空局为月球太空行走模拟制作月球表面地质采样工具原型。载于第 69 届国际宇航大会 (IAC),德国不来梅。[6] Andrea EM Casini、Petra Mittler、Aidan Cowley、Lukas Schlüter、Marthe Faber、Beate Fischer、Melanie von der Wiesche 和 Matthias Maurer。2020 年。欧空局的月球模拟设施开发:LUNA 项目。空间安全工程杂志 7, 4 (2020),510–518。[7] David Coan。2022 年。NEEMO 22 EVA 概述与汇报。技术报告。[8] Brian E Crucian、M Feuerecker、AP Salam、A Rybka、RP Stowe、M Morrels、SK Mehta、H Quiriarte、Roel Quintens、U Thieme 等人。2011 年。ESA-NASA“CHOICE”研究:在南极内陆康科迪亚站过冬,作为太空飞行相关免疫失调的类似物。在第 18 届 IAA 人类进入太空研讨会上。[9] Enrico De Martino、David A Green、Daniel Ciampi de Andrade、Tobias Weber 和 Nolan Herssens。 2023. 模拟低重力环境下的人体运动——弥合太空研究与地面康复之间的差距。神经病学前沿 14 (2023),1062349。[10] Gil Denis、Didier Alary、Xavier Pasco、Nathalie Pisot、Delphine Texier 和 Sandrine Toulza。2020. 从新太空到大太空:商业太空梦想如何变成现实。宇航学报 166 (2020),431–443。[11] Dean B Eppler。1991. 月球表面作业的照明限制。 NASA STI/Recon 技术报告 N 91(1991),23014。[12] Barbara Imhof、Waltraut Hoheneder、Stephen Ransom、René Waclavicek、Bob Davenport、Peter Weiss、Bernard Gardette、Virginie Taillebot、Thibaud Gobert、Diego Urbina 等人。2015 年。月球行走与人机协作任务场景与模拟。在 AIAA SPACE 2015 会议和博览会上。4531。[13] Curtis Iwata、Samantha Infeld、Jennifer M Bracken、Melissa McGuire、Christina McQuirck、Aron Kisdi、Jonathan Murphy、Bjorn Cole 和 Pezhman Zarifian。2015 年。并行工程中心基于模型的系统工程。在 AIAA SPACE 2015 会议和博览会上。4437。[14] Juniper C Jairala、Robert Durkin、Ralph J Marak、Stepahnie A Sipila、Zane A Ney、Scott E Parazynski 和 Arthur H Thomason。2012 年。在 NASA 中性浮力实验室进行 EVA 开发和验证测试。第 42 届国际环境系统会议 (ICES)。[15] Hyeong Yeop Kang、Geonsun Lee、Dae Seok Kang、Ohung Kwon、Jun Yeup Cho、Ho-Jung Choi 和 Jung Hyun Han。2019 年。跳得更远:在失重沉浸式虚拟环境中向前跳跃。2019 年 IEEE 虚拟现实与 3D 用户界面 (VR) 会议。699–707。https://doi.org/10.1109/VR.2019.8798251 [16] Lin-gun Liu。 2022. 火星和月球上的水。陆地、大气和海洋科学 33, 1 (2022), 3。[17] Erin Mahoney。2022. 美国宇航局将在亚利桑那州沙漠进行阿尔特弥斯月球漫步练习。https://www.nasa.gov/feature/nasa-to-practice-artemis- moonwalking-roving-operations-in-arizona-desert