本文借鉴了可用的俄罗斯未分类的军事学术文献,以说明俄罗斯威胁感知,并作出了对策,这导致了2022年入侵乌克兰。虽然对许多人来说可能令人惊讶,但俄罗斯威胁在2000年代后期到2022年,侧重于从西方造成的混合战争威胁。从俄罗斯的角度来看,后苏联空间中的“阿拉伯之春”和“颜色革命”是由西方煽动和设计的,这是一项旨在颠覆和推翻反对它的政府的运动的一部分。这种威胁感知来自一种特殊的战略方法,涉及监测和预测国际局势,以确定可能导致对俄罗斯联邦国家安全的未来威胁的趋势和情况。正如本文将证明的那样,俄罗斯对策演变为“积极辩护”的战略,涉及避免使用所谓的俄罗斯联盟边界外部部队的部队。2022年入侵乌克兰的俄罗斯军队是这种“积极辩护”的一部分。
进行准确的亚季节预测仍然是科学界的挑战(White等人2022)。中期时间范围位于中期每日天气预报和季节性预测之间(Vitart等人,2017年)。为了改善季节前的前提,已经做出了巨大的努力来理解不同的过程,相互作用和可预测性的来源(Domeisen等人。,2022; Robertson&Vitart,2019年; White等。,2022)。中季可预测性与大气,海洋和土地过程有关(Robertson&Vitart,2019年)。亚季节范围最重要的预性能力来源如下:Madden-Julian振荡(Lau&Waliser,2011; Vitart等人,2017年),由于其对热带和外界全球天气的影响(Cassou,2008; Deflorio等人,2019年);土壤水分(Koster等人,2010年),因为这会影响较低的大气温度和局部预言(Domeisen等人,2022; Wei&Dirmeyer,2019年);雪覆盖(Lin&Wu,2011年),尤其是极地和中纬度地区(Penny等人,2019年);海洋条件(Woolnough等人,2007年),显示出在某些地区增强降水和温度预测的能力(Subramanian等人,2019年);以及对降水和温度的影响滞后的strato-everhere(Butler等人,2019年)。,2020年;纽曼等人。,2003年; Rashid等。,2011年; Vitart,2014年)。,2022; Mariotti等。改善亚季节预测还与模型物理的改善有关,通过纳入了地球系统的辅助过程和许多组成部分,例如海洋和海冰,以及在与前面提到的可预测性不同来源之间相互作用相关的初始条件下的不确定条件(Merryfield等。下午预测变得更加准确(Robertson&Vitart,2019年)。NWP的预测在过去几十年中有所改善(Magnusson&Källén,2013年)。NWP模型已从概率的方法转变为概率方法。的确,集合(概率)预测通过为预测变量产生一组概率来帮助捕捉大气混乱(Palmer,2000)。因此,一个概率的预测通过更大的结合预测提供了最有可能的情况和与之相关的不确定性,从而可以更自信地验证亚季节预测。由于上述所有努力,亚季节合奏预测已经展示了其潜在的,以提供有价值的预测和早期对重大气候和天气事件的警报(Domeisen等人,2018年; Robertson&Vitart,2019年)。这些
摘要:近年来,在环境问题和对可再生能源的研究中,光伏(PV)系统纳入全球能源景观。对温度和太阳辐照度的准确预测对于优化PV系统的性能和网格整合至关重要。机器学习(ML)已成为提高这些预测准确性的有效工具。这项全面的综述探讨了基于ML的温度和太阳辐照度的PV系统的先驱技术和方法。本文介绍了各种算法和通常用于温度和太阳辐射预测的技术之间的比较研究。这些包括回归模型,例如决策树,随机森林,XGBOOST和支持向量机(SVM)。本文的开头强调了准确的天气预报对PV系统运行以及与传统气象模型相关的挑战的重要性。接下来,探索了机器学习的基本概念,突出了提高准确性的好处,以估算电网集成的PV发电。
1独立研究人员,苏格拉,雅克,班加罗尔摘要:高级太阳预测已成为将可再生能源整合到现代电网中的关键因素。本理论综述研究了一系列AI驱动的混合模型 - 将深度学习体系结构(例如CNN-LSTM)与统计或基于物理的方法相结合,以证明改进的预测如何提高网格可靠性和效率。通过利用各种数据源,例如卫星图像和基于地面的测量,这些方法提供了更准确的短期和长期预测,从而使网格操作员能够更好地平衡供应和需求,最大程度地减少削减,并降低运营成本。本文还讨论了可靠的太阳预测,从鼓励透明和确切的预测到市场机制的监管框架来奖励准确的生成计划。此外,包括能源公司,太阳能经理和系统运营商在内的行业专业人员可以利用先进的预测来优化维护,存储集成和财务计划。未来的研究可以从AI预测技术中融合了气候模型的整合,为能够处理不断发展的天气模式的可扩展和自适应系统铺平了道路,并加速了全球过渡到可再生能源。索引 - 摩尔预测,混合AI模型,网格稳定性,可再生能源整合,能源政策,深度学习,气候变化
算法在我们的私人和公共生活中扮演着许多重要角色。他们产生搜索引擎结果,在社交媒体上组织新闻源,并确定有希望的浪漫伴侣。他们为司法,贷款,社会福利和大学录取决定提供了信息。他们还提出了紧迫和烦恼的道德挑战。例如,美国刑事司法系统中使用的一些算法预测个人是否会累进。著名的是,已经发现这种算法表现出明显的种族和性别偏见,例如将黑人非累犯者评级为比白人非养育者更喜欢重新审判(Angwin等人(Angwin等),2016a,b)。在某种程度上对这种发现的反应中,算法公平的研究在计算机科学,哲学和其他领域中扮演着重要的作用。从这些研究中得出的理论上有趣且在道德上显着发现的是,实施明智的公平概念可以兑现,以付出代价(Corbett-Davies et al。,2017年; Menon和Williamson,2018年; Kearns and Roth,2019年)。
摘要为了对未来的天气和环境条件做出准确的预测,预测分析利用了统计建模和机器学习等尖端数据分析工具。预测模型能够通过评估从传感器,卫星和气象站收集的大量信息来提供重要的环境变量(包括空气质量,湿度,降水和温度)的精确预测。这项研究提供了利用散点图,普通最小二乘模型(OLS)模型的输出,错误计算以及准确性评估的散点图的调查结果的全面检查,并特别强调了决策树模型。通过保证可以准确预测未来结果的可信赖模型来创建可信赖的模型,从而极大地帮助了机器学习技术的进步。结果表明,天气预报中的机器学习方法取得了长足的进步,从而实现了更准确的预测。
摘要。这项研究调查了用于医院中医学消费的机器学习,以优化资源分配和物流。我们使用两种方法:一种结合了多家医院数据的统一方法,以及一种预测个人医院的分离方法。我们根据消费趋势探索了K-均值聚类和手动对聚类。虽然K-均值聚类并未产生改进,但手动夹确定了具有明显增强预测准确性的特定药物对(例如,医院1:MAPE 1:MAPE从19.70%降低到3.30%)。但是,统一的方法并不能始终如一地使所有医院受益(例如,医学9)。这强调了在某些医院的准确性提高与其他医院潜在损失的需求。总体而言,分离方法中的手动聚类显示出希望。未来的工作应探索高级自动聚类技术,例如动态时间扭曲(DTW),并利用较大的数据集进行进一步验证。
我最喜欢的人倾向于思考知识图是我们将世界视为事物的看法,而不一定是如何将数据存储和结构化为字符串。以及组织内部的许多这些信息存储库。因此,概念,商业概念的概念,我们都可以与人,地点,订购供应商,字体,代表性的skus以及这些商业概念之间的关系相关联是您如何开始描述数据并将含义附加到其上的关键。这确实是许多组织中知识图的体现。,因此,知识图确实适合这种模具,其中知识图的焦点往往是在需要消耗信息而不是需要如何生成,结构化或存储的信息上。以及在业务概念层面上以业务层面的代表数据,以至于企业中的所有用户不一定必须具有技术背景,了解技术的需求和寻找的内容,并以这种方式代表这些数据,只有这些数据只能使他们能够成为这个位置,使我们能够在这个位置处于这个位置,我们最终可以在自我服务的角度来看,这是我的最终数据,我知道这一点是我的讨论,而我的讨论得出了,这是我的讨论,这是我的讨论,这是我的讨论,而这是我的讨论,而这是一个如此之多,这是我的讨论,而这是一个如此之所以如此,这是我在这个位置的讨论。
