遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
P. E. Vullum Sintef Trondheim博士7465,挪威A. L. Dadlani博士,J。Torgersen教授,F。B。Prinz教授机械与工业工程系挪威科学技术大学Trondheim 7491 7491,挪威O. Vinogradova教授 15213, USA Dr. T. D. Schladt, Dr. J. E. Mueller, Dr. S. Kirsch, Dr. G. Huebner Volkswagen Group Research 38436 Wolfsburg, Germany Prof. D. Higgins Department of Chemical Engineering McMaster University Hamilton, ON L8S 4L7, Canada Prof. V. Viswanathan Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213,美国©2021作者。Wiley-VCH GmbH发表的高级材料。这是根据Creative Commons归因许可条款的开放访问文章,该条款允许在任何媒介中使用,分发和复制,前提是适当地引用了原始作品。
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
梁辐照,âror!Marcador没有定义。 ,错误! Marcador没有定义。 虽然是Marcador没有定义。,错误!Marcador没有定义。 虽然是Marcador没有定义。虽然是
1 Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA 2 Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322, USA 3 U.S. Army Combat Capabilities Development Command Chemical Biological Center, Research & Technology Directorate, Aberdeen Proving Ground, MD 21010, USA 4 Ballydel Technologies, Inc., Wilmington, DE 19803,美国5电气与计算机工程系,特拉华大学,纽瓦克大学,德国,19711年,美国6材料科学与工程系,特拉华大学,纽瓦克大学,纽瓦克,19711年,美国,美国
摘要:合成、表征了 Ni/α-Al2O3 催化剂和一系列双金属催化剂(包括 Pd-Ag、Ni-Pd、Ni-Zn、Ni-Ag 和 Ni-Ga)并在乙炔选择性加氢制乙烯中进行了测试。双金属催化剂 Ni-Ga 与 Pd-Ag 基催化剂相比表现出几乎相同的乙烯选择性。评估了 Ni/Ga 比对乙炔加氢催化活性和乙烯选择性的影响。通过透射电子显微镜、X 射线衍射、氢气程序升温还原和 X 射线光电子能谱进行表征,以确定 Ni-Ga 基催化剂上的活性相,这与催化性能和催化剂上发生的反应机理相关。 Ni-Ga晶格结构中Ga的存在限制了解离H*的移动,降低了乙烯的吸附结合能,从而可以防止乙炔过度加氢。
20催化升级是一种有前途的废物管理策略,它通过将它们转换为高价值增值的产品来增强21种聚合物废物的循环。本评论介绍了22种新型催化剂的最新发展,它们在各种温度下的23种升级方法中的应用和反应机制。高温升级方法24包括用生物量衍生的生物炭的聚合物催化热解和25种基于金属的催化剂的碳化,这些催化剂主要产生氢气(H 2),单芳族26个碳氢化合物和碳纳米材料。电恢复,光化,糖酵解和27个酶辅助的去聚合发生在低和中等温度的情况下,具有28个金属基催化剂,有机催化剂和生物催化剂。从这些方法中获得29种产物,例如苯甲酸,甲酸,H 2,BIS(2-30羟基乙基)terephathaterate,单苯甲酸酯,单(2-羟基乙基)terephathalate等。生物质衍生的31个生物炭具有丰富的官能团,多孔结构和较大的表面积