¹Univ. Grenoble Alpes,CNRS,Grenoble INP*,G2Elab,Grenoble,38031,法国 *francis.boakye-mensah@g2elab.grenoble-inp.fr 摘要 - 为了在气候变化法规日益严格的情况下找到 SF 6 的可行替代品,应该对压缩空气等替代品进行适当的评估。对于中压应用,耐受电压被用作尺寸标准,这取决于流光的引发和传播,而流光是电击穿的前兆。为了优化设计,应该通过预测模型从实验和数值上彻底研究在不同应力、压力等条件下此类放电的引发和传播机制。到目前为止,大多数数值研究都是通过自制代码完成的,因为由于此类计算的复杂性和非线性,商业软件中不易获得流光模型。最近,随着商业有限元软件COMSOL™Multiphysics 等离子体模块稳健性的增强,可以开发具有合理精度的流光放电模型。
当前对电解铝阴极碳钠渗透的研究主要是测量阴极膨胀曲线,主要显示宏观特征。然而,显微镜结构通常是不流失的。作为多孔介质,阴极碳块的扩散性能与其内部孔结构紧密相关。将阴极碳块视为多相复合材料,本研究从微结构的角度研究了钠扩散过程。开发了一个预测钠扩散的模型,考虑了孔隙率,温度,结合效应,电流降低和分子比例等因素。在Python中实现了一个随机聚合模型,并将其导入到有限元软件中,以使用Fick的第二定律模拟钠扩散。结果表明,孔隙率提高,温度较高,结合效应降低,电流密度增加和较高的分子比增强了钠浸润,降低了扩散耐药性并增加了扩散系数。模拟与实验结果很好地对齐,证实了其准确性和可靠性。
“ Tavipilot Soft是Tavi程序的突破,使用增强现实提供了毫米精度。临床医生使用精确的术前图像(CT-SCAN)进行TAVI的规划。但是,在手术过程中,它们仅依赖于流体镜检查,该腔镜检查间接地显示了解剖结构(需要对比度注射)和瞬时。准确定位阀需要长时间的培训和经验。我们的Tavipilot软识别精确瓣膜放置的关键心脏解剖特征,并有望改变患者和临床医生的TAVI程序。” Caranx联合创始人和CMO Eric Sejor说。
Photoelectrochemical Water Splitting Using Cuprous Oxide (Cu 2 O)-Based Photocathode – A Review Yerbolat Magazov, 1, 2 Asset Aliyev, 1 Kuanysh Moldabekov, 1 Aliya Kurbanova, 1, 2 Assel Rakymbekova, 2 Magzhan Amze, 2 Niyazbek Ibrayev 3 and Vladislav Kudryashov 2,*摘要在这里,我们介绍了在氧化乡土(Cu 2 O)基于氧化浓缩层(CU 2 O)基于光电油化学水分的基础上所取得的进展和瓶颈的关键小型审查,并特别关注与Unbonversion材料,光伏系统和PhotoAnodes,用于Unbiase diasas tandandem dectections的集成。cu 2 O光(光电座)具有吸引人的特性,使其成为一个吸引人的选择,包括合适的带隙,低成本处理,以及在理论极限上高达18%的太阳能至氢效率的潜力;但是,它们的广泛应用受到光腐蚀,低光电流和光吸收不良的限制。这些系统在太阳能驱动的氢生成中展示了这些挑战的解决方案,例如添加上转材料以增加吸收光谱和串联构型,以进行光伏和整体效率。它突出显示了这种类型的细胞的紧凑和模块化特征,同时审查其设计原理,材料策略,性能指标以及与可再生氢生产的大规模混合。
作为手术风险评分高估死亡率,严重主动脉狭窄(AS)接受经导管主动脉瓣植入(TAVI)的患者的风险预测仍然是一个尚未解决的问题。因此,我们研究了新型生物标志物中肾上腺素甲素(MR-PRODM)和生长分化因子15(GDF-15)是否可以为风险评估增加价值。收集了92例患者的血清水平,并通过生存分层。不仅出示了在随访期间死亡的患者较高的生物标志物水平((MR-PRODM(幸存者:0.922 nmol/L(0.706-1.202)与死者:1,347 nmol/l(1,038-1,678),1,038-1,678),1,038-1,678),P = 0.0003),P = 0.0003);(GDF-15)(GDF-15(GDF-15)167.67.675.M.25(M.25)PRE:25; 2524.4)与死者:2770.0 pg/ml(2401.0-3701.0),p = 0.0006)))),但是通过使用kaplan-meyer分析,结合了youden index,我们能够确定一个特定的临界值,我们能够确定一个良好的差异(MR-P-P-peckivival forection forectional)。 0.85),p = 0.002);将提出的生物标志物纳入二进制逻辑回归进一步提高了经典风险预测因子的预后价值(AUC = 0.811(标准误差0.05; 95%CI(0.693; 0.899))。此外,TAVI后幸存的患者的血清促ADM水平显着降低。因此,新型的生物标志物具有通过提供个性化和客观信息的TAVI患者的风险分层的潜力。
由于价格上涨和LI [Ni X Mn Y Co Z] O 2(X + Y + Z = 1)的资源供应链有限,(NMC)阴极材料,锂离子电池(LIB)回收技术已成为解决价格问题的最佳解决方案。主要是,常规的水透明过程已应用于LIB回收字段,以识别其价值。水均铝法的一个显着优势是它是启用Hydro-cathode®方法的桥梁。然而,必须在生产前体阴极材料的生产中使用杂质(掺杂剂)效果并行研究。不足的选择性杂质去除技术导致最终的NMC阴极活性材料中意外的电化学特性,这可能会被几种不同的杂质掺杂。因此,如果我们要将水电 - 情感®方法视为NMC阴极材料的主要回收过程,则仔细检查掺杂剂元件(无机和有机物)至关重要。
使用说明 以下承保政策适用于 Cigna 公司管理的健康福利计划。某些 Cigna 公司和/或业务线仅向客户提供使用情况审查服务,并不作出承保决定。对标准福利计划语言和承保决定的引用不适用于这些客户。承保政策旨在为解释 Cigna 公司管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件 [团体服务协议、承保证明、承保证书、计划概要 (SPD) 或类似计划文件] 的条款可能与这些承保政策所依据的标准福利计划有很大不同。例如,客户的福利计划文件可能包含与承保政策中涉及的主题相关的特定排除条款。如果发生冲突,客户的福利计划文件始终优先于承保政策中的信息。在没有控制联邦或州承保要求的情况下,福利最终由适用福利计划文件的条款决定。在每个特定情况下,承保范围的确定都需要考虑 1) 服务日期生效的适用福利计划文件的条款;2) 任何适用法律/法规;3) 任何相关附属源材料,包括承保政策;4) 特定情况的具体事实。每个承保请求都应根据其自身情况进行审查。医疗主管应在适当的情况下行使临床判断,并酌情做出个人承保决定。如果护理或服务的承保范围不取决于具体情况,则只有在根据适用承保政策中概述的相关标准提交请求的服务(包括承保诊断和/或程序代码)时,才会提供报销。如果因本承保政策未涵盖的疾病或诊断而开具账单,则不允许报销服务(请参阅下面的“编码信息”)。开具账单时,提供商必须使用提交生效日期最合适的代码。根据适用的承保政策,针对未附带承保代码的服务提交的索赔
Gianmarco Iannopollo,医学博士Audo,医学博士J,Giampiero Nobile,医学博士Rognoni,MD N,Daniela Aschieri,医学博士或Daniele Iacaccarino,MD P,Filippo Ottani,MD Q,Caterina Cavazza,Q,Ferdinando Varbella,MD R,Gioel Gabrio Secco,Gioel Gabrio Secco,MD MD T,Gianluca Campo,MD B和MD A 的Gianni Casella
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。