地下管道在世界各地发挥着重要作用,它将饮用水、原水、石油和天然气从源头输送到最终消费者,运输距离长短不一。在南非,特别是夸祖鲁-纳塔尔省,这些管道大多在偏远的山区铺设,以缩短路线。这就需要通过电网扩展实现远程电气化,但由于阴极保护 (CP) 系统的连接成本高且用电量低,因此这是一个具有挑战性的解决方案。因此,很难收回初始投资成本,因为需要为管道沿线安装的每个变压整流器 (TRU) 每月支付电费 [1]。此外,交流电是 TRU 单元最主要和最常见的电源 [2]。在这种应用中,必须使用整流器将供电从交流转换为直流 [3]。
摘要目的:提出一种消除刺激瞬态的新方法,该方法利用了电兴奋的神经组织的绝对难治时期。背景:电刺激通常会产生明显的信号伪像,这些信号伪影可能会掩盖重要的生理信号。从这些信号中删除伪像并了解潜在信息可以提供客观的电路参与度,并有可能驱动神经调节研究和疗法的范围。方法:我们对五个连续的帕金森氏病患者进行了颅内生理研究,他们接受了深度脑刺激(DBS)手术,这是他们常规护理的一部分。单极刺激(阴极或阳极)通过DBS电极成对通过一系列刺激间间隔传递。来自相邻未使用的电极触点的记录使用宽带采样和精确的同步来在绝对耐火周期内生成刺激瞬态的稳健模板。然后以不同的间隔从记录中减去这些刺激瞬变的模板,以提取和分析残余神经电位。结果:掉伪影后,残留信号表现出绝对和相对难治性的表情,并指示神经活动的时间。阴极和阳极DBS脉冲产生了局部组织激活的不同模式,显示出与先前刺激的相位独立性。阴极刺激比阳极刺激产生的局部组织反应更强,与临床观察到较低的激活阈值的临床观察。可检测到的可检测神经反应发生在短峰潜伏期(刺激后0.19至0.38 ms),在去除前完全或部分被刺激伪影遮住了。然而,阴极和阳极脉冲引起的伪影模式等效但相反。解释:拟议的伪影去除技术通过允许直接测量局部组织反应而无需刺激极性反转,模板缩放或专门的过滤器来增强先前的方法。这种方法可以整合到未来的神经化系统中,以可视化刺激诱发的神经潜力,否则这些神经潜力将被刺激伪像所掩盖。
摘要:通过溶胶-凝胶法制备了几种组合,包括 (1-xy) NaNi 0.7 Co 0.3 O 2 、xNa 2 MnO 3 和 yNaCoO 2 体系。已经应用化学计量的 NaNO 3 、Mn (Ac) 2 ∙4H 2 O、Co (Ac) 2 ⋅ 4H 2 O 和 Ni(NO 3 ) 2 ⋅ 6H 2 O 对 28 个样品进行了测试。我们证明,包括掺杂 Al 的 Na 1.5 Ni 0.117 Co 0.366 Al 0.017 Mn 0.5 O 2 在内的样品是 NIBT 中正极材料的最佳组成,因为该组合中的钴 (Co) 含量低于 NiCoO 2 。从 Co 使用成本和毒性的角度来看,这一点很重要。通过在2.0-4.0V范围内进行循环测试,分析了正极材料的充放电行为。结果表明,此类样品可以高效地消除Co不适合的缺点,也可以替代比Li更便宜的Na。
迁移性双极混凝土穿透性腐蚀抑制剂的描述Hind Corroguard是一种迁移性的双极腐蚀抑制剂,基于经过改良的液体胺制剂,以防止阳极阳极腐蚀和pow绕。对于阳极和阴极部位的钢增强结构的腐蚀保护非常有效,它们暴露于高氯化物和一些符合ASTM-G-109和JIS A-6205的腐蚀性化学环境。性能后,科罗盖德在同时影响阳极过程和阴极过程的高性能腐蚀作用时,它包含分子,其中电子密度分布会导致抑制剂吸引阳极和阴极部位。凭借混凝土内的水分,这些分子朝钢迁移,并沿钢沿单分子层沉积,并重新建立钢和氯化物之间的屏障以防止腐蚀。使用
2019 年奖项提名创新名称:保护嵌入式钢电线杆。提名人:William A. Byrd, Sr. 和 William A. Byrd, Jr. 哥伦比亚腐蚀控制公司类别:阴极保护涂层和衬里仪器阴极保护测试材料设计完整性评估化学处理其他 - 填写创新开发日期:(2015 年 1 月)至(2018 年 5 月)网站:www.columbiacorrosioncontrol.com 简要说明:阴极保护 (CP) 用于阻止直接嵌入式和部分涂层输配电电线杆的地下腐蚀。涂层电线杆(和其他应用)在直接埋入土壤中时由于涂层保护不足而遭受了大量腐蚀故障。这对电力公用事业的安全性和可靠性来说是一个主要问题。这种简单的阴极保护应用解决了这个问题。此外,它还提供了其他重要的附带功能,可提高美国电力系统电网的可靠性。
碳化,75 现场浇注,弹性膜,121 阴极保护混凝土桥梁构件,38 停车结构,29 耐化学性,107 氯化物污染,29,38,75 混凝土桥梁构件,阴极保护,38 取芯,75 开裂,75 性质,107 铺路砖,预制,83 钢筋,氯化物污染,29,38 建筑行业团队,角色,65 腐蚀,钢筋,38 裂缝桥接,弹性体,107,121 裂缝,83
对于充分的阴极保护,疲劳裂纹起始阻力略优于在空气中,而疲劳裂纹扩展速率与在空气中大致相同。过度阴极保护略微降低了疲劳裂纹起始阻力,但并未使其低于空气中的水平。应力集中系数为 2.0、3.5 和 5.0 的缺口试样的疲劳阻力随应力集中系数的增加而降低。过度阴极保护通过在裂纹内产生钙质氧化皮沉积物来降低疲劳裂纹扩展速率,从而降低了应力强度因子的有效范围。如果将当前的疲劳起始和裂纹扩展数据与其他关于 ASTM A710 钢在海水中的腐蚀疲劳研究的已发表数据进行比较,则当前结果与那些数据高度一致。
碳化,75 现场浇注,弹性膜,121 阴极保护混凝土桥梁构件,38 停车结构,29 耐化学性,107 氯化物污染,29,38,75 混凝土桥梁构件,阴极保护,38 取芯,75 开裂,75 性质,107 铺路砖,预制,83 钢筋,氯化物污染,29,38 建筑行业团队,角色,65 腐蚀,钢筋,38 裂缝桥接,弹性体,107,121 裂缝,83
the voltage difference (ΔE) is 0.348 V. The Ni 2+ /Ni 4+ anodic and cathodic peaks of the Mo/F-2 sample correspond to 4.879 V and 4.578 V, respectively, and the ΔE value is 0.301 V. Typically, the potential difference (ΔE) between the anode peak and the cathode peak reflects the electrochemical polarization [47].MO/F-2样品的ΔE值小于原始样品,表明MO/F-2样品中的锂插入/提取动力学更快。结果与上述速率性能测试结果一致,表明适当量的MO-F共同掺杂可以帮助减少极化,从而提高LNMO材料的速率能力。
表 1.4. 通过不同的测量方法,得到不同电极和电解质的 Ce 3+ /Ce 4+ 电荷转移动力学参数。报告的动力学参数包括标准速率常数 𝑘 0 、交换电流密度 𝑖 0 、还原峰和氧化峰之间的分裂 𝛥𝐸 𝑝 以及阳极和阴极电荷转移系数 𝛼 𝑎 和 𝛼 𝑐 。在正文中,我们报告电荷转移系数时指的是阴极电荷转移。 ................ 27