此预印本版的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.12.12.25322118 doi:medrxiv preprint
摘要背景:本文回顾了当代猪和牛参考基因组中已发表的潜在致病变异的定位及其因果关系的证据。尽管从基因图谱和全基因组关联研究中鉴定致病变异本身就很困难,但动物遗传学研究人员已经针对几种与牲畜育种相关的性状提出了推定的致病变异。结果:为了进行这篇综述,我们阅读了支持牛和猪的 13 个基因(ABCG2、DGAT1、GHR、IGF2、MC4R、MSTN、NR6A1、PHGK1、PRKAG3、PLRL、RYR1、SYNGR2 和 VRTN)存在潜在致病变异的文献,并将它们定位在当代参考基因组中。我们审查了它们之间的因果关系的证据,旨在将基因座、拟议的致病基因和拟议的致病变异的证据区分开来,并报告在牛或猪基因组中定位序列变异所需的生物信息学搜索和策略。结论:总而言之,通常有很好的证据表明基因座水平存在关联,八个基因座存在特定致病基因的证据,六个基因座存在特定致病变异的一些实验证据。我们建议报告新的潜在致病变异的研究人员使用参考坐标系统,显示本地序列上下文,并将变异提交到存储库。
研究了具有不确定因果顺序的切换量子通道,用于受量子热噪声影响的量子比特幺正算子相位估计的基本计量任务。报告显示,不确定顺序的切换通道具有特定功能,而传统的确定顺序估计方法则无法实现这些功能。相位估计可以通过单独测量控制量子比特来执行,尽管它不会主动与幺正过程交互 - 只有探测量子比特会这样做。此外,使用完全去极化的输入探针或与幺正旋转轴对齐的输入探针可以进行相位估计,而这在传统方法中是不可能的。本研究扩展到热噪声,之前已使用更对称和各向同性的量子比特去极化噪声进行了研究,它有助于及时探索与量子信号和信息处理相关的具有不确定因果顺序的量子通道的属性。
3冰岛大学医学院,冰岛雷克雅未克101号。4诺华生物医学研究,美国马萨诸塞州剑桥市温莎街22号。美国6诺华生物医学研究,10675年,约翰·杰伊·霍普金斯大道,圣地亚哥,加利福尼亚州圣地亚哥,加利福尼亚州92121,美国7年7月72121日Monoceros Biosystems,12636 High Bluff Drive,Suite 400,圣地亚哥,加利福尼亚州。 92130,美国美国6诺华生物医学研究,10675年,约翰·杰伊·霍普金斯大道,圣地亚哥,加利福尼亚州圣地亚哥,加利福尼亚州92121,美国7年7月72121日Monoceros Biosystems,12636 High Bluff Drive,Suite 400,圣地亚哥,加利福尼亚州。92130,美国
进化是一个以新颖性产生为标志的高度复杂的过程,这需要个人的历史和集体组织。在本文中,我们研究了生物组织与开放式进化(OEE)之间的关系,特别关注两者之间的因果关系。为了在化学系统中提供这种因果关系的定量证据,我们应用集装理论来评估自动催化集的出现如何影响Kauffman模型中的复杂性动态。在本文的第二部分中,我们通过分析最简单的自动催化设置对Kauffman模型中复杂性动力学的影响,特别是在没有参数相关性的情况下,加强了这种猜想。通过将自动催化集解释为化学系统中的组织结构,我们的发现为研究生物组织与OEE之间的因果关系提供了第一个数值支持。这项工作代表了对OEE与生物组织之间动态关系的初步研究的一个有希望的领域,并可能会促进其在理论生物学中的联系。
我们利用孟德尔随机化(MR)来评估白细胞端粒长度(LTL)和肌醇侧面硬化症(ALS)之间的因果关系以及基因组范围研究的汇总统计数据(n = 〜38,000 n = 〜38,000 for ltl and 〜31,000 for ltl and 〜81,000,欧洲人群中的ltl;我们进一步评估了脂质在从LTL到ALS的途径中的介导作用。在欧洲人群中,ALS上LTL的每标准偏差降低为1.10(95%CI 0.93-1.31,p = 0.274),在亚洲人群中为0.75(95%CI 0.53–1.07,p = 0.116)。在欧洲人口中的LTL和额颞痴呆之间也发现了这种无效的关联。但是,我们发现LTL对ALS的间接影响可能是由低密度脂蛋白(LDL)或总胆固醇(TC)介导的欧洲人群。这些结果对广泛的灵敏度分析是可靠的。总的来说,我们的MR研究不支持LTL与ALS风险之间的直接因果关系,而是为LDL或TC对LTL和ALS在欧洲人群中的影响提供了暗示性的证据。
该工作流程图说明了研究的预处理和分析步骤。绿色框 1 详细说明了使用自然语言处理模型的变量选择步骤。最初从英国生物库数据字典中过滤出来的变量将使用基于余弦相似度得分的自然语言处理模型进一步选择。绿色框 2 概述了因果网络分析步骤 - 使用混合图形模型和快速因果推理从每个估算数据集构建痴呆症网络。然后将结果汇总成一个完整的痴呆症网络。
表型驱动的方法通过分析将患病与健康状态区分开的表型特征来鉴定遇到疾病的化合物。这些方法可以指导发现有针对性的扰动,包括小分子药物和遗传干预措施,这些扰动将疾病表型调节针对更健康状态。在这里,我们介绍了PDGRAPHER,这是一种因果启发的图形神经网络(GNN),旨在预测能够逆转疾病表型的能够逆转脑臂(一组治疗靶标)。与学习扰动如何改变表型的方法不同,Pdgrapher解决了直接预测实现所需响应所需的急性的信息问题。pdgrapher是一种将疾病细胞态嵌入基因调节或蛋白质 - 蛋白质相互作用网络中的GNN,学习了这些状态的潜在表示,并确定最佳的组合扰动,最有效地将患病的状态转移到该潜在的潜在水平内所需的身影状态。在具有化学性能的九种细胞系中的实验中,PDGRAPHER鉴定出比竞争方法高达13.33%的有效脑扰手,并获得了高达0.12的归一化折扣累积增益,以高达0.12个,以分类治疗靶标。它还在十个遗传扰动数据集上表现出竞争性能。PDGRAPHER的一个主要优势是其直接的预测范式,与传统上在表型驱动的研究中构成的间接和计算密集型模型相反。与现有方法相比,这种方法可加速训练高达25倍。pdgrapher提供了一种快速的方法,用于识别触觉扰动和推进表型驱动的药物发现。
通过去极化噪声造成的一般量子统一操作员被复制并插入量子开关过程中,以实现因果阶的叠加。制定了所得开关的量子通道的表征,以便其在探针控制量子对的关节状态下的作用。然后,对开关通道进行了特定研究,以针对嘈杂的统一操作员的相位估计的重要层次任务,并由Fisher信息(经典或量子)评估。与常规估计技术进行了比较,其中直接在一个单阶段或两个阶段的级联中直接探测了具有定义阶的一个阶段或两个阶段的级联,或者使用两个或多个量子的使用它们的几种用途。在带有无限顺序的开关通道中,报告了特定属性,对于估计有意义,而不存在常规技术。表明,尽管它从未直接与统一相互作用,但仍可以单独测量它以进行有效的估计,同时丢弃与统一相互作用的探针Qubit。此外,对控制Qubit的测量还可以在常规估计变得不那么有效的情况下,在很难的条件下保持有效估计的可能性,例如,在不构成的输入探针或盲目情况下,当单位轴的轴时是盲目的情况。,即使输入探针倾向于与单一轴的轴或完全去极化的输入探针保持一致,在这些条件下,通过测量控制量轴的效率估计仍然是可能的,而在这些条件下,常规估计变得无效。还分析了开关通道的探针值的测量,并证明为相位估计增加了有用的功能。结果有助于对开关量子通道的性质和能力进行持续的识别和分析,并具有无限的订单,以进行信息处理,并发现了量子估计和Qubit Metrology的新可能性。
量子开关是因果顺序不确定过程的典型例子,据称在量子计量领域的某些特定任务中,它比因果顺序确定的过程具有多种优势。在本文中,我们认为,如果进行更公平的比较,其中一些优势实际上并不成立。为此,我们考虑了一个框架,该框架允许对不同类别的因果顺序不确定过程的性能(由量子 Fisher 信息量化)与因果策略在给定计量任务上的性能进行适当的比较。更一般地说,通过考虑最近提出的具有经典或量子控制因果顺序的电路类别,我们得出了不同的例子,其中因果顺序不确定的过程比因果顺序确定的过程具有(或不具有)优势,从而限定了因果顺序不确定在量子计量方面的兴趣。事实证明,对于一系列示例,已知在物理上可实现的具有因果序量子控制的量子电路类被证明比因果序量子电路以及因果叠加量子电路类具有严格的优势。因此,对此类的考虑提供了新证据,表明在量子计量学中,不确定的因果序策略可以严格胜过确定的因果序策略。