我曾多次指出,物理学的最新发展给我们上了一课,即不断扩展适合于对新经验进行分类的概念框架的必要性,这引导我们采取一种普遍的认识论态度,这种态度可能有助于我们避免在其他科学领域出现明显的概念困难。然而,由于各方都认为,这种态度似乎涉及一种与真正的科学精神不相容的神秘主义,我很高兴利用目前的机会向在完全不同的领域工作但团结一致努力为我们的知识找到共同基础的科学家发表演讲,重新回到这个问题上,最重要的是试图澄清已经产生的误解。在讨论将要讨论的问题之前,我只需要简要地回顾一下物理学的发展如何经常地告诉我们,即使是描述我们日常经验所必需的最基本的概念的一致应用,也是基于最初未被注意到的假设,然而,对这些假设的明确考虑是
本研究使用 Toda-Yamamoto 因果关系检验来检验土耳其可再生能源消费与预期寿命之间的因果关系。通过分析 1990 年至 2019 年的数据,该研究探讨了这些变量之间的关系。Toda-Yamamoto 因果关系检验的结果表明,可再生能源消费与预期寿命之间没有 Granger 因果关系,表明可再生能源消费对土耳其的预期寿命没有显著影响。然而,研究发现预期寿命与可再生能源消费之间存在 Granger 因果关系,这表明预期寿命的提高可能导致土耳其可再生能源消费的增加。这项研究意义重大,因为它提供了有关可再生能源消费与土耳其预期寿命之间关系的见解。结果强调了在检查公共卫生结果时考虑可再生能源消费以外的因素的重要性。该研究的结果可以为政策制定者提供参考,帮助他们制定优先考虑公共卫生结果和促进可持续能源实践的能源政策。
摘要 — 通过神经网络实现的深度学习通过提供用于复杂任务(例如对象检测/分类和预测)的方法,彻底改变了机器学习。然而,基于深度神经网络的架构已经开始产生收益递减,这主要是由于它们的统计性质以及无法捕捉训练数据中的因果结构。深度学习的另一个问题是其高能耗,从可持续性的角度来看,这并不是那么理想。因此,人们正在考虑采用替代方法来解决这些问题,这两种方法都受到人脑功能的启发。一种方法是因果学习,它考虑到神经网络训练数据集中项目之间的因果关系。预计这将有助于最大限度地减少深度神经网络学习表示中普遍存在的虚假相关性。另一种方法是神经混沌学习,这是一项最新发展,其灵感来自生物神经网络(大脑/中枢神经系统)中神经元固有的非线性混沌放电。这两种方法都显示出比单纯使用深度学习更好的效果。为此,在本文中,我们研究了如何将因果学习方法和神经混沌学习方法整合在一起以产生更好的结果,尤其是在包含链接数据的领域。我们提出了一种这种整合的方法来增强分类、预测和强化学习。我们还提出了一组需要研究的研究问题,以使这种整合成为现实。索引术语——深度学习、因果学习、神经混沌学习、图神经网络、随机共振
参考文献:[1] Pawłowski M, Paterek T, Kaszlikowski D 等. 信息因果关系作为一种物理原理[J]. Nature, 2009, 461(7267): 1101-1104。[2] Dahlsten OCO, Lercher D, Renner R. Tsirelson 的广义数据处理不等式界限[J]. New Journal of Physics, 2012, 14(6): 063024。[3] Allcock J, Brunner N, Pawlowski M 等. 从信息因果关系中恢复量子和非量子相关性之间的部分边界[J]. Physical Review A, 2009, 80(4): 040103。
因果关系和可解释人工智能 (XAI) 是计算机科学中独立的领域,尽管因果关系和解释的基本概念有着共同的古老根源。由于缺乏共同涵盖这两个领域的评论工作,这种情况进一步加剧。在本文中,我们调查了文献,试图了解因果关系和 XAI 是如何以及在多大程度上交织在一起的。更准确地说,我们试图揭示这两个概念之间存在什么样的关系,以及如何从中受益,例如,在建立对人工智能系统的信任方面。结果,确定了三个主要观点。在第一个观点中,因果关系的缺乏被视为当前人工智能和 XAI 方法的主要局限性之一,并研究了“最佳”解释形式。第二个是务实的观点,将 XAI 视为一种工具,通过识别值得追求的实验操作来促进因果探究的科学探索。最后,第三个观点支持因果关系对 XAI 具有先导性的观点,其方式有三种:利用从因果关系中借用的概念来支持或改进 XAI、利用反事实来解释,以及将访问因果模型视为自我解释。为了补充我们的分析,我们还提供了用于自动执行因果任务的相关软件解决方案。我们相信,通过强调潜在的领域桥梁并揭示可能的局限性,我们的工作为因果关系和 XAI 这两个领域提供了统一的视角。
Cavique(2024)的文章,“因果关系在人工智能中的影响”,为Causalai的重要性提出了一个令人信服的案例。通过关注因果关系的关系而不是仅仅相关性,可以为更透明,公平和可靠的AI系统提供途径。Cavique认为,与负责的AI,公平AI和可解释的AI相比,Causalai是最不受欢迎的方法,这在很大程度上是由于其科学严格的严格性和减少偏见的潜力。,尽管有希望,但Causalai并非没有挑战。该评论旨在评估Cavique提出的Causalai的某些局限性和潜在批评,认为尽管它具有实质性的承诺,但其实施和实际应用可能比作者建议的更为复杂,并且充满了困境。
奖励黑客[Skalse等,2022]是AI对齐的关键问题,尤其是在增强学习(RL)中。AI系统旨在优化特定的奖励,通常会发现意想不到的方式来最大化这种奖励,这与人类意图不同。真正的目标与模型所学的行为之间的这种错位可能会导致不安全或不良结果。解决奖励黑客攻击对于构建可靠与人类价值观相吻合的AI系统至关重要。通过人类反馈(RLHF)进行加强学习的主要奖励黑客攻击是因果错误识别[Tien等,2022]。当模型错误地学习动作与奖励之间的因果关系,导致其优化代理或虚假相关性而不是真实目标时,就会发生这种情况。例如,该模型可能会在其环境中操纵指标或利用快捷方式。这创建了一个方案,其中AI根据奖励功能看起来很成功,但无法实现预期的目标。该项目旨在探索是否准确识别奖励模型中的因果机制是否可以帮助减轻奖励黑客攻击。通过对推动理想行为的因果关系进行建模,我们希望将AI引导到更加一致的学习中。具体来说,该项目将调查将因果推断整合到奖励建模中以提高RLHF鲁棒性的方法,从而降低AI利用意外漏洞的风险。目标是了解因果推理如何有助于更好地对齐具有人为价值的AI系统。
摘要可以说,因果关系分析应该为解释深度学习和概括铺平一种有希望的方法。将因果关系纳入人工智能(AI)算法,但由于其模糊性,非量化性,计算效率低下而受到挑战。在过去的18年中,这些挑战基本上已经解决了,建立了最初是由大气可预测性动机的严格的因果关系形式。这不仅在大气 - 海洋科学中开辟了一个新领域,即信息流,而且还导致了其他学科的科学发现,例如量子力学,神经科学,金融经济学等,通过各种应用。This note provides a brief review of the decade-long effort, including a list of major theoretical results, a sketch of the causal deep learning framework, and some representative real-world applications in geoscience pertaining to this journal, such as those on the anthropogenic cause of global warming, the decadal prediction of El Niño Modoki, the forecasting of an extreme drought in China, among others.关键字:因果关系,Liang-Kleeman信息流,因果人工智能,模糊认知地图,可解释性,Frobenius-Perron操作员,天气/气候预测
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
This paper uses panel Granger causality estimations with the approaches developed by Nair- Reichert and Weinhold (2001), and Bangake and Eggoh (2011) as well as the Dumitrescu and Hurlin (2012) test, with the algorithm developed by Lopez and Weber (2017), to analyse the causality relations between all the nine IMF financial development indices, and the real GDP growth considering a sample of 46各大洲在1990年至2017年间都传播的国家。获得的结果揭示了这些因果关系的动态特征,总体而言,将金融机构指数与金融市场指数的指数进行比较时,没有发现显着差异。结果证实了双向因果关系的存在,尽管对所有IMF指数没有相同的统计鲁棒性,从而解决了金融发展的相关方面:金融机构和市场的访问,深度和效率。