摘要背景:抗菌素抵抗(AMR)构成了关键的全球健康挑战,导致疾病延长持续时间,死亡率增加和经济负担。由于其生物活性化合物,使用基于植物的天然产品为传统抗生素提供了潜在的替代方法。目的:评估植物来源化合物在微生物病原体引起的疾病治疗及其在克服AMR中的潜在作用的疗效。方法:采用了涉及200个微生物学患者的横断面研究设计。通过对各种植物提取物(大蒜,neem,牛至)的结构化调查,访谈和实验室测试收集数据。使用琼脂扩散法和最小抑制浓度(MIC)测定法评估了这些提取物的抗菌活性。使用SPSS进行了统计分析,包括独立的t检验,相关性和回归。 结果:植物提取物表现出强大的抗菌活性,大蒜显示出15mm,INEM 18mm和牛至20mm的抑制区。 回归分析证实了植物化合物在抑制微生物生长中的重要作用(β= 0.250,p = 0.001,r²= 0.065)。 结论:基于植物的化合物是治疗微生物感染和管理AMR的有希望的候选者。 建议进一步的研究和临床验证。使用SPSS进行了统计分析,包括独立的t检验,相关性和回归。结果:植物提取物表现出强大的抗菌活性,大蒜显示出15mm,INEM 18mm和牛至20mm的抑制区。回归分析证实了植物化合物在抑制微生物生长中的重要作用(β= 0.250,p = 0.001,r²= 0.065)。结论:基于植物的化合物是治疗微生物感染和管理AMR的有希望的候选者。建议进一步的研究和临床验证。
摘要。在全球化时代,人们在世界各地之间不断旅行,航空运输是最重要的交通工具之一。今天,它也是最安全的交通方式之一。尽管如此,不断提高安全水平并减少事故的绝对数量及其受害者至关重要。这个想法是本文主题创建的开始,同时也是进一步提高安全性的尝试。飞行员和乘客的安全在空中运行中起着至关重要的作用。最重要的因素之一是飞机的可靠性。可靠性工作的主要目标是估计产品在特定时间段后仍能运行的单位百分比。为了能够做出这样的陈述,有必要选择一个概率分布,以促进构建人们希望做出的合理精确的概率陈述。在这种分析中,故障间隔时间被用作得出所选示例中飞机可靠性结论的主要变量。
X 连锁肢端巨人症 (X-LAG) 是一种罕见的垂体巨人症,与婴儿期发育的生长激素 (GH) 和催乳素分泌垂体腺瘤/垂体神经内分泌肿瘤 (PitNET) 有关。它是由 Xq26.3 染色体上的重复引起的,导致基因 GPR101 的错误表达,该基因是垂体 GH 和催乳素分泌的组成性活性刺激物。GPR101 通常存在于其自身的拓扑关联域 (TAD) 内,并与周围的调控元件隔离。X-LAG 是一种 TAD 病,其中重复破坏了保守的 TAD 边界,导致新 TAD,其中异位增强子驱动 GPR101 过度表达,从而导致巨人症。在这里,我们从 4C-seq 研究中追踪了一名 X-LAG 女性患者的完整诊断和治疗途径,这些研究通过医疗和外科手术干预以及详细的肿瘤组织病理学证明了新 TAD。说明了治疗患有 X-LAG 的幼儿的复杂性,包括使用神经外科手术和成人剂量的第一代生长抑素类似物的组合来实现激素控制。
摘要:不对称器官系统的许多方面都受致病生物体通路的对称模型 (R&L) 控制,但体节和肢芽等敏感物质需要避免其影响。由于对称和不对称结构由相似或附近的物质发展而来,并利用许多相同的信号通路,因此实现对称变得更加困难。在此,我们旨在从二维量子演算(q 演算、q 类似物或 q 疾病)的角度概括一些重要的测量,包括分形的维数和 Tsallis 熵(二维量子 Tsallis 熵 (2D-QTE))。该过程基于从量子演算的角度对 Tsallis 熵的最大值进行概括。然后,通过考虑最大的 2D-QTE,我们设计了一个离散系统。作为应用,我们利用 2D-QTE 描绘了一个受到致病生物 (DCO) 感染的离散动态系统。我们研究系统的正解和最大解。研究了平衡和稳定性。我们还将基于 2D-QTE 开发一种新颖的基本生殖率设计。
通过证明USP7抑制作用在临床前测试中对EBV阳性癌症有效,Lieberman Lab为EBV阳性癌症及其他地区的这种策略提供了更多研究,为这项策略铺平了道路。由于USP7与EBV的关系类似于它与其他可能引起其自身癌症的疱疹病毒的关系,因此USP7抑制作用可能具有与非EBV疱疹病毒癌的可比性。
土壤呼吸(RS)是大气CO 2的最大来源,对近地面风之间的关系,CO 2从土壤表面释放,测量方法对预测未来的大气CO 2浓度至关重要。在这项研究中,风速与土壤CO 2通量之间的关系通过荟萃分析在全球范围内阐明,并进一步探讨了通量测量方法与对照试验的结果一起探索,以阐明测量结果的不确定性。结果表明,近地面风速与土壤CO 2释放呈正相关,而近地表风导致土壤CO 2气体释放增加。风干扰会影响浓度梯度和气体室测量值,而较低计算的土壤CO 2释放了与风泵效应和负压的伯诺利效应的观点相冲突,导致更大的表面气体交换。对数响应比率的结果表明,在广泛使用的气体室方法测量值中,近地表风导致低估为12.19–19.75%。这项研究的结果表明,当前的RS测量值有偏见,并且需要紧急处理近地表风对RS测量的影响,以更准确地评估陆地碳循环并制定气候变化响应策略。
立场声明 肩袖肌腱病和盂肱关节炎不太可能由疫苗接种引起 本立场声明基于作者的观点而制定,旨在作为一种教育工具。它不是系统评价的产物。鼓励读者考虑所提供的信息并得出自己的结论。 概述 越来越多的人声称疫苗接种会导致肩袖肌腱病、粘连性关节囊炎和关节炎 1 。提出的理论是,疫苗偶尔会被无意中注射到与盂肱关节肩峰下滑囊相邻的三角肌下滑囊中。并且在该区域注射会通过免疫炎症反应损害肩部组织 2 。没有高质量的证据表明疫苗接种会导致或加重常见的肩部问题,如肩袖肌腱病和关节炎。只有患者描述认为疫苗接种与他们的肩部问题之间存在关联 3,4,5 。当出现新症状时,可能会将责任归咎于同期事件 6 。人类思维容易出现这种事后诸葛亮谬误(此之后,所以因之而起)。时间关系并不意味着因果关系,尤其是在肩痛和免疫接种等常见事件中。随着年龄的增长,肩袖病变很常见 7,8 。大多数这些变化最终都会导致肩痛。老花眼(需要戴老花镜)、腕管综合症、关节炎和肩袖肌腱病等与年龄相关的疾病会缓慢出现,通常在特定时间或特定事件后首次被发现 2,3 。肩袖肌腱病的症状可能会多年不被注意,直到人们注意到肩部,就像在肩部接种疫苗后一样。免疫接种也很常见 9 。许多人每年接种流感疫苗,以保护自己和可能接触的弱势群体。疫苗接种还可以限制流感流行的可能性。接种疫苗通常会导致肌肉疼痛几天或几周。常见的肩部问题可能会在每年接种疫苗的同时出现或引起注意。即使人们认为免疫接种和肩部病变之间存在因果关系,它们也极有可能同时发生。新出现的症状、与年龄相符的肩部病变与疫苗接种之间有很大的重叠可能性,而疫苗接种并没有对肩部造成实际伤害。据估计,每年接种疫苗的近 600 万人已经患有可检测到的肩袖肌腱病,这是一种重要的
摘要。在全球化时代,人们在世界各地之间不断旅行,航空运输是最重要的交通工具之一。如今,它也是最安全的交通方式之一。尽管如此,不断提高安全水平并减少事故绝对数量及其受害者至关重要。这个想法是本文主题创建的开始,同时也是进一步提高安全性的尝试。飞行员和乘客的安全在空中运行中起着至关重要的作用。最重要的因素之一是飞机的可靠性。可靠性工作的主要目标是估计产品在特定时间后仍能正常运行的单位百分比。为了能够做出这样的陈述,必须选择一个概率分布,以便于构建人们希望做出的合理精确的概率陈述。在本分析中,故障间隔时间被用作得出所选示例中飞机可靠性结论的主要变量。
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
