重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
摘要。基于锂技术的储能设备由于其与行业其他技术相比的重要优势,因此自信地领导着各自的市场。尽管它们的外观历史相对较远,但他们还是在物理和化学成分中进行了许多修改。该领域所有研究的恒定目标之一是形成有关给定化学电流源内发生的降解过程以及影响它们的方法的知识。系统化和确定锂电池性能下降的基本原因仍然是当今的主题问题,因此在本文中被考虑。,无论研究这个问题的研究如何,都考虑到许多科学家和许多不同类型的公司的现有许多长期实验数据,但是在不识别和消除电池运行中尽可能多的破坏性因素的情况下,不可能优化工作。这一过程的困难也在于一个事实,即考虑到世界上所有高科技生产过程,没有两个相同的锂电流来源。以单个电池为例,从消息来源证明了维持高性能的能力,即由于其寿命,因此没有它们。证实了高性能的实验中获得的数据,再次表明,锂电流来源的退化问题可以并且应该进一步研究。
execepecte s ummary对一个世纪的科学询问的全面综述阐明了作弊草(Bromus tectorum)入侵的原因和后果,并评估了解决方案以恢复健康的本地生态系统。在1800年代介绍给北美,这一欧亚年度是由铁路,车辆和牲畜传播的,殖民地的土地被过度放牧和其他因素所困扰和退化。今天,数以百万计的英亩已转换为作弊的单一文化。数千万英亩的土地仍然处于入侵的高风险中。继续在西部广大地区进行扩张,这表明目前的牲畜放牧仍然负责备忘录的扩张和主导地位。作弊草是一位栖息地的通才,具有极高的生殖率,并且比本地草早发芽。它胜过本地植物的幼苗用于水和土壤养分,并改变土壤化学和植物植物的优势。牲畜践踏,放牧和表面障碍是通过消除天然的碎片草和生物土壤外壳来将健康的干旱生态系统转变为备用的草皮系统的关键生态转换,这些系统是对杂草的自然防御。现在,一个牲畜 - cheatgrass-fire循环在美国西部的许多公共土地上都占上风,使土地易受较大,更频繁的火灾。作弊草的入侵降解或消除了本地野生动植物的栖息地和牲畜范围。气候变化可能会改变作弊草的分布,并可能加剧入侵。恢复本地栖息地的解决方案仍然难以捉摸且昂贵。磁盘,有针对性的放牧,开处方的火灾,燃油破坏建筑风险恶化的作弊草侵害;非本地饲料物种的种植会产生自己的侵入性杂草侵袭;虽然除草剂,但天然寄生虫和本地植物的播种可能会在问题所需的区域尺度上失败。减少或消除牲畜放牧的结果足够大,但是完全恢复可能需要数十年。将本地牧场转换为作弊草显着降低了土壤碳,因此将作弊草侵染到本地植物组合中可能在缓解气候中起关键作用。我们建议从分配量表放牧的牲畜休息,直到本地物种取代作弊草。在有光侵扰的土地上,我们建议将放牧的牲畜放牧到促进本地物种繁荣和维持土壤生物的水平。简介
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2024年1月17日发布。 https://doi.org/10.1101/2022.05.29.222275734 doi:medrxiv preprint
森林砍伐因其负面影响而引起人们的担忧,例如气候变化、生物多样性减少、土壤退化、木材供应减少、洪水和淤积。因此,这是一个复杂的过程,对环境和经济都有影响( Van Khuc 等人,2018 年)。森林覆盖的任何变化都会对当地生态系统和全球环境产生积极和消极的影响( Silva Junior 等人,2021 年)。破坏和退化自然生态系统导致全球生物多样性下降( Angelsen 和 Kaimowitz,1999 年)。森林砍伐问题是全球外部性的一个例子( Lawrence 等人,2022 年)。当前的研究表明,需要确定导致森林砍伐的具体经济因素,并制定有效的政策和工具来减轻其在全球和国家层面的影响( Bhatia 和 Cumming,2020 年;Ahmed 等人,2023 年)。
SLC4A10是一种血浆膜结合的转运蛋白,它利用Na +梯度驱动细胞HCO 3-摄取,从而介导酸挤出。在哺乳动物大脑中,SLC4A10在主要神经元和中间神经元以及脉络丛的上皮细胞中表达,该器官调节CSF的产生。使用五个无关家庭的样本中的下一代测序,包括九个受影响的个体,我们表明双重性SLC4A10功能丧失变体会导致人类临床上可识别的神经发育障碍。该病情的基本临床特征包括婴儿期肌张力障碍,所有领域的精神运动延迟发展和智力障碍。受影响的个体通常显示出与自闭症谱系障碍有关的特征,包括焦虑,多动症和刻板动作。在两种情况下,据报道,在生命的最初几年中,癫痫发作的发作是分离的,进一步影响的儿童在没有明显的临床癫痫发作的情况下在脑电图上表现出了暂时性的癫痫发作。据报道枕骨围在出生时正常,但在10个受影响的个体中,有7个进化了出生后的小头畸形。神经放射学特征包括与枕骨圆周相比的相对保留,特征性狭窄有时“裂开”的侧脑室和call体异常。SLC4A10 - / - 小鼠,缺乏SLC4A10,还显示出小的侧脑室和轻度的行为异常,包括延迟的习惯和两目标新颖对象识别任务的改变。在SLC4A10 - / - 小鼠和受影响的个体中崩溃的脑腹膜cles cles表明SLC4A10在CSF的生产中起着重要作用。然而,值得注意的是,尽管CSF在发育中的大脑和成年大脑中的各种作用,但SLC4A10 - / - 小鼠的皮质似乎非常完整。与突触标记的共同染色表明,在神经元中,SLC4A10定位于抑制性,但不能兴奋性的午睡。这些发现得到了我们的功能研究的支持,该研究表明,在SLC4A10 - / - 小鼠中释放了抑制性神经肌群的释放,而兴奋性神经递质谷氨酸的释放则保留了。对细胞内pH的操纵部分挽救了GABA释放。我们的研究共同定义了一种与SLC4A10中双重性致病变异相关的新型神经发育障碍,并强调了SLC4A10功能丧失对脑发育,突触传播和网络特性的进一步分析的重要性。
SLC4A10 是一种质膜结合转运蛋白,它利用 Na + 梯度驱动细胞 HCO 3 − 吸收,从而介导酸排出。在哺乳动物的大脑中,SLC4A10 在主要神经元和中间神经元以及脉络丛(调节脑脊液产生的器官)的上皮细胞中表达。通过对来自五个不相关家族的九名受影响个体的样本进行下一代测序,我们发现双等位基因 SLC4A10 功能丧失变异会导致人类出现临床上可识别的神经发育障碍。该病的主要临床特征包括婴儿肌张力减退、所有领域的精神运动发育迟缓和智力障碍。受影响的个体通常表现出与自闭症谱系障碍相关的特征,包括焦虑、多动和刻板动作。有两例患者在出生后的头几年内报告了单独的癫痫发作,另一例患儿在脑电图上显示双颞叶致癫痫放电,但没有明显的临床癫痫发作。据报道,出生时枕额周长正常,但 10 名患儿中有 7 名患有进行性出生后小头畸形。神经放射学特征包括与枕额周长相比脑容量相对保留、特征性狭窄(有时呈“裂缝状”)侧脑室和胼胝体异常。缺乏 SLC4A10 的 Slc4a10 − / − 小鼠也表现出较小的侧脑室和轻微的行为异常,包括适应延迟和双物体新物体识别任务的改变。Slc4a10 − / − 小鼠和患儿的脑室塌陷表明 SLC4A10 在脑脊液的产生中起着重要作用。然而,值得注意的是,尽管脑脊液在发育和成人大脑中发挥着不同的作用,Slc4a10 − / − 小鼠的皮层看起来总体上是完整的。与突触标记物的共染色表明,在神经元中,SLC4A10 定位于抑制性而非兴奋性的前睡前小睡。这些发现得到了我们的功能研究的支持,这些研究显示在 Slc4a10 − / − 小鼠中抑制性神经递质 GABA 的释放受到损害,而兴奋性神经递质谷氨酸的释放得以保留。操纵细胞内 pH 值可部分挽救 GABA 的释放。我们的研究共同定义了一种与 SLC4A10 中的双等位基因致病变异相关的新型神经发育障碍,并强调了进一步分析 SLC4A10 功能丧失对大脑发育、突触传递和网络特性的影响的重要性。
扩张型心肌病的传统定义是,在没有异常负荷条件(如原发性瓣膜疾病)或足以导致心室重塑的严重冠状动脉疾病的情况下,存在左心室或双心室扩张或收缩功能障碍。这一定义被认为过于严格,因为不伴有扩张的左心室运动减少可能是扩张型心肌病的初期表现。扩张型心肌病的病因包括遗传(原发性扩张型心肌病)或后天因素(继发性扩张型心肌病)。后天因素包括感染、毒素、癌症治疗、内分泌病、怀孕、心动过速和免疫介导疾病。5-15% 的获得性扩张型心肌病患者携带可能致病或致病基因变异(即基因突变)。因此,诊断测试和治疗方法应始终考虑遗传和后天因素。该研讨会将重点关注当前的多维诊断和治疗方法,并讨论可能推动未来治疗的潜在病理生理学,旨在修复或替换现有的基因突变,或针对遗传性或获得性扩张型心肌病的特定炎症、代谢或促纤维化驱动因素。
可再生能源 (RE) 的间歇性导致能源供需不匹配。另一个问题是能源产量减少。解决这一问题的潜在方法是解决由于可再生能源产量增加而导致的电网拥堵问题。本研究将重点关注间歇性可再生能源的农场氢气生产整合(图 1),同时比较澳大利亚和荷兰的情况。
编码层粘连蛋白A和C(层粘连蛋白A/C)的LMNA基因(核层层的主要成分)会导致包括扩张心肌病(DCM)在内的椎板病,但尚未完全阐明潜在的分子机制。在此,通过利用单细胞RNA测序(RNA-SEQ),使用测序(ATAC-SEQ),蛋白质阵列和电子显微镜分析来实现转疗酶 - 可访问的染色质测定,我们表明,通过转疗法造成型号的结构成熟,不足在核膜上,Q353R -LMNA - 相关DCM的发病机理是基础的。抑制河马途径可挽救TEAD1在LMNA突变体心肌细胞中通过TEAD1挽救心脏发育基因的失调。来自DCM患者具有LMNA突变的患者心脏组织的单细胞RNA-Seq,证实了TEAD1靶基因的表达失调。我们的结果提出了一种用于转录失调作为LMNA相关DCM的潜在治疗方法的信息。