Solvay是一家科学公司,其技术为日常生活的许多方面带来了好处。在61个国家 /地区拥有22,000多名员工,债务人,想法和要素以重塑进步。该小组试图为所有人创造可持续的共享价值,特别是通过其Solvay One Planet路线图围绕三个支柱制作:保护气候,保护资源并促进更好的生活。该集团的创新解决方案有助于在房屋,食品和消费品,飞机,汽车,电池,智能设备,医疗保健应用,水和空气净化系统中发现的更安全,清洁剂和更可持续的产品。成立于1863年的Solvay今天在其绝大多数活动中排名全球的前三家公司,并在2022年提供了134亿欧元的净销售额。solvay在布鲁塞尔和巴黎(Solb)上列出。在www.solvay.com上了解更多信息。
瑞士汝拉山脉的旧 Belchen 隧道采用钻孔爆破法在膨胀沉积岩(即富含硬石膏的泥灰岩 (Gipskeuper) 和 Opalinus 粘土页岩 (OPA))中开挖。早在 20 世纪 60 年代施工期间,这两种岩层就通过高膨胀压力和隆起对隧道支撑造成了严重损坏,后来这些隧道不得不再次翻新。重要的维护和修理促使我们用隧道掘进机 (TBM) 建造了第三条新的 Belchen 隧道(2016 – 2021 年)。在本研究中,我们展示了在位于新 Belchen 隧道强烈断层的 OPA 段的监测段获取的现场数据集,这些数据集用于研究四年多以来的应力演变和控制机制。主要数据集包括总径向压力、径向应变、岩石含水量、岩石和混凝土温度的时间序列,以及从钻孔日志和三维摄影测量开挖面模型分析中获得的地质结构细节。最后,一系列理想化的数值模拟探索了测量温度变化对测量总压力的影响,证实了温度对与混凝土凝固和季节性气候变化有关的径向压力有很强的影响。我们发现,在我们的监测部分,隧道支撑上的径向压力非常不均匀,即它们介于 0.5 MPa 和 1.5 MPa 之间,并且在开挖 4 年后仍在缓慢增加。测量的压力是旧 Belchen 隧道管中测量压力的 2 到 5 倍,其大小与实验室测试中获得的膨胀压力相似。EDZ 渗透性测量、含水量演变和隧道底板的径向应变数据表明,膨胀过程有助于长期径向压力的积累。热弹性变形和膨胀可能会因构造断层的局部复活和裂缝起始应力水平下的间隙灌浆开裂而叠加。
通过将光结合到下波长体积,光力学的微腔可以大大增强光和机械运动之间的相互作用。但是,这是以增加光损耗率的成本。因此,将基于微腔的光力系统放置在未解决的边带机制中,以防止基于边带的地面冷却。减少此类系统光损耗的途径是设计腔镜,即与机械谐振器相互作用的光学模式。在我们的工作中,我们分析了这样的光力学系统,其中其中一个镜子与频率很大,即悬挂的Fano镜子。此光力学系统由两种光学模式组成,这些光学模式与悬挂的Fano镜子的运动。我们制定了一个量子耦合模式描述,其中包括标准色散光学耦合以及耗散耦合。我们在线性状态下求解了系统动力学的兰格文方程,表明即使腔本身不在解析的边带机制中,但可以从室温下进行冷却,而是通过强光模式耦合来实现有效的侧带分辨率。重要的是,我们发现,需要针对有效激光衰减来适当分析腔输出光谱,以推断机械谐振器的声子占用。我们的工作还可以预测如何通过工程化Fano Mirror的特性来达到基于FANO的微博中非线性量子光学机械的制度。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
摘要。洞穴是众所周知的档案,可保留有关过去的有价值信息,与重建过去的气候和环境有关。我们从480厘米深的研究中采样了沉积物,并取消了16S核糖体核糖酸(RRNA)基因基因的元法编码分析,以补充岩性伐木,SECIMEN-TOLOGY,SEDIMEN-TOLOGY和OPTIMALIGHATION刺激性刺激的发光(OSL)数据。这些分析揭示了与各种水输入沿沿本的沉积条件。沉积物的OSL年龄放置在74.7±12.3至56±8 ka(基部至顶部)之间。然而,在洞穴的上部和下层中可能发生了最近的最后一次冰川最大(LGM)古流量。细菌的位置都随深度变化。考虑到嗜热细菌,我们只能从热硫弹簧,旧热弹簧或Sapropel沉积物的表面上假设它们的起源。
生物系统利用分子识别的分子识别,这些分子以形状,大小,化学功能和电荷相互补充来完成许多生物学事件,例如细胞通信,酶活性和抗原抗体相互作用,以高效和特定的方式。受自然的启发,化学家设计并制备合成分子受体,以探索特异性,形状识别和结合位点互补性的概念,这是生物受体的典型特征。利用分子识别中合成受体的潜力需要在所研究的复合物方面的结构信息,以类型,数量和强度的相互作用的相互作用。近地面受体的概念,能够接受唐·克拉姆(Don Cram)在1983年提出的有机或无机客人的概念,这是通过第一个carcerand的合成而实现的,这是由于两个cavitands通过四个接头的共价连接而实现的。2通过链接器的不同类型和长度,可以调节内腔外侧门户的大小,形状和尺寸。carcerands被设计为包括有机分子的培养基,控制其反应性,动力学和稳定性。3两个值得一提的选定示例是驯服环丁二烯4和o -benzyne的稳定。5金属指导的自组装方法是通过在90年代初通过富士马的开拓性工作引入了化学界的。6,7这种方法向Cavitand场的转移产生了具有可逆性并克服共价途径的某些合成限制的协调笼。
摘要出生队列研究提供了有关整个生命过程中主题的宝贵数据,包括健康,教育,社会经济状况和福祉。结果,它们是生物社会研究人员回答众多复杂研究问题的重要资源。然而,尽管被定位为代表其国家或地区背景的代表,但队列研究通常无法捕捉边缘化群体的经验。这样一个群体是性和性别少数(或LGBTQ +)的人,直到最近,他们在出生队列中都在很大程度上看不见。这在过去五十年中发生了巨大的社会和态度变化,并且与异性恋者相比,社会,政治,经济,健康以及福祉差异的明确证据。但是,由于数量少,定量分析的机会受到限制,即使捕获了LGBTQ +数据也会忽略LGBTQ +数据。本文简要概述了英国出生队列研究中的标准数据收集和分析技术如何捕获酷儿生活(但未)。然后,使用1970年出生的队列,作者探讨了以人为本的混合方法肖像的可能性,以提高对该群体的生活轨迹的理解。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。