简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
摘要:这项研究的目的是评估利用BW(Buttress Wall)来控制越南胶质土壤条件下膜片壁的偏转的影响。使用在特定项目期间密切监视的数据评估了碰撞层的物理和机械性能,这是利用硬化土壤模型的3D数值模拟的验证。分析结果与现场监视数据非常匹配,该数据测试了模拟模型的准确性。这构成了进一步研究BW壁的维度参数的基础,包括它们之间的长度,厚度和间距。从参数研究中获得的结果表明,在BW壁之间改变壁的长度和间距显着限制了隔膜壁的变化,而厚度的变化具有可忽略的效果。通过3D数值模拟,已经建立了最大壁偏转与参数(例如壁长和BW壁之间的间距)之间的线性关系。
在物理学中长期以来已经知道,当光被限制在很小的体积中时,可能会发生有趣的现象[1]。最著名的自发发射在腔中被光扩增,从而导致称为激光器的集体光子模式[2,3]。自从这一发现以来,对光腔的丰富研究传统已经发展出了一些开创性和基本发现。在当前的讨论中,特别有趣的是,光腔内的光线相互作用可以大大增强[4],因此,当物质被放置在光腔中时,双重光 - 亮点特征的准粒子可以形成,因此称为polaritons。已经产生了这些极化子的大量结果[5],并且仍在深入研究它们的形成和表征,并面临许多挑战。例如,在这一研究中,一个很大的里程碑是实现了极化玻色 - 因子凝结物[6,7]。最近开发的想法试图将焦点从极地转变为轻度驱动现象转向其形成对托管材料的作用。在一个称为极化化学的开创性领域中[8]光态状态用于增强和控制化学反应。形成极化子已通过改变势能格局来增强分子中的反应途径[9-14]。在没有实际光子的情况下。这种真空腔材料工程与通常广泛研究的集体效应和驱动(激发)偏振状态的凝结的情况形成鲜明对比。至关重要的是,在极化化学中表明,在强的耦合方案中,腔体中电磁场的真空波动可能会逐渐到电子结构的过渡,因此在黑暗腔中可以发生新的诱发现象,即类似地,与限制光子模式的空腔量子量子 - 电动力学耦合可以通过强烈耦合到真空波动的量子材料的性质进行更改。正式,根据自2010年初以来所做的工作,作为由欧洲研究委员会资助的两个主要项目的一部分(Dynamo 5和
图为(前排,从左到右)通用汽车导师加里·拉什顿(Gary Rushton); Oussama Oussi,机械工程研究生,Starkville;内森·雷诺兹(Nathan Reynolds),花瓣机械工程初中;斯塔克维尔机械工程高级高级机械工程; Vance Hudson,田纳西州科利尔维尔机械工程硕士毕业生;麦迪逊电气和计算机工程硕士毕业生Jonah Gandy; (第二行,左)员工顾问Debi McNabb,MSU高级车辆系统中心项目协调员;巴西工业工程高级工业工程高级黛比·阿伦卡·奥利维拉(Debbie Alencar Oliveira);贝利·何塞(Bailey Jose),橄榄分公司工业和系统工程研究生;雷切尔·亨德里克斯(Rachel Hendricks),工商管理硕士研究生,阿拉巴马州胡佛;玛丽·尼尔森·克林顿(Mary Nielson Clinton),田纳西州日耳曼敦的传播/公共关系研究生; (第三排,左)Jagdeo Singh,Laurel机械工程高级高级;电气和计算机工程副教授,教师顾问Randy Follett;摩洛哥电气和计算机工程研究生的胺太豪迪; Mendenhall机械工程高级高级Matthew Sinclair;以及高级车辆系统中心研究工程师III的员工顾问迈克尔·吉布森(Michael Gibson)。
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
深层的下次波长激光器(或纳米剂)高度要求在纳米级的紧凑芯片上生物成像和感测。在可见范围内,所有三个维度短的单粒子纳米仪的开发的主要障碍之一是高激光阈值和由此产生的过热。在这里,我们在Cuboid CSPBBR 3纳米颗粒中阐述激子 - 孔子凝结和镜像MIE模式,以在其超小为0.53μm的可见波长下从其超小为0.53μm的可见波长(从其超小为0.53μm)(≈0.007μm3或≈λ3 /20 /20)实现。通过直接构造具有相似材料参数的相应的一维和二维波引物系统,证明了来自所有三个维度的纳米腔的极化性质。这种深层的亚波长纳米震剂不仅是由激子结合能的高值(≈35meV),re骨指数(低温下的2.5)和CSPBBR 3的发光量子产率,而且还通过对MIE弥补的优化而通过质量取得了良好的量子的优化。此外,最佳激光条件的关键参数是CSPBBR 3中的自由光谱范围和声子频谱,该光谱控制了极化子凝结路径。这种化学合成的胶体CSPBBR 3纳米酶可能会在任意表面上放置,这使它们成为与各种芯片系统集成的多功能工具。
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
Viklund,Eric,David N. Seidman,David Burk和Sam Posen。 “使用离心枪抛光剂改善NB3SN空腔性能。” 超导科学与技术37,第1期。 2(2024):025009。 Viklund,Eric等。 “使用重新配置方法中NB3SN SRF腔中的愈合梯度降解”。 ARXIV预印型ARXIV:2405.00211(2024)。Viklund,Eric,David N. Seidman,David Burk和Sam Posen。“使用离心枪抛光剂改善NB3SN空腔性能。”超导科学与技术37,第1期。2(2024):025009。Viklund,Eric等。“使用重新配置方法中NB3SN SRF腔中的愈合梯度降解”。ARXIV预印型ARXIV:2405.00211(2024)。
在过去几年中,使用腔量子量子电动力学效应,即真空电磁场来修饰腔中的材料特性。但是,仍然存在稀缺的一般结果,这些结果为直观的理解和局限性提供了可以实现哪种效果的指南。我们为低能量物质激发之间的有效相互作用提供了这样的结果,或者通过它们相互耦合与腔电磁(EM)线场或通过耦合与夫妇与EMFIELD的介体模式相互耦合或间接相互作用。我们证明了诱导的相互作用本质上是纯粹的静电,因此由零频率评估的EM Green函数完全描述。我们的发现表明,使用一个或几个空腔模式减少模型可以轻松产生误导性结果。