©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
生物系统利用分子识别的分子识别,这些分子以形状,大小,化学功能和电荷相互补充来完成许多生物学事件,例如细胞通信,酶活性和抗原抗体相互作用,以高效和特定的方式。受自然的启发,化学家设计并制备合成分子受体,以探索特异性,形状识别和结合位点互补性的概念,这是生物受体的典型特征。利用分子识别中合成受体的潜力需要在所研究的复合物方面的结构信息,以类型,数量和强度的相互作用的相互作用。近地面受体的概念,能够接受唐·克拉姆(Don Cram)在1983年提出的有机或无机客人的概念,这是通过第一个carcerand的合成而实现的,这是由于两个cavitands通过四个接头的共价连接而实现的。2通过链接器的不同类型和长度,可以调节内腔外侧门户的大小,形状和尺寸。carcerands被设计为包括有机分子的培养基,控制其反应性,动力学和稳定性。3两个值得一提的选定示例是驯服环丁二烯4和o -benzyne的稳定。5金属指导的自组装方法是通过在90年代初通过富士马的开拓性工作引入了化学界的。6,7这种方法向Cavitand场的转移产生了具有可逆性并克服共价途径的某些合成限制的协调笼。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
流量控制在于修改自然状态,以使另一个被认为是有利的状态收敛,因为可能会减少阻力或噪声辐射。在本文中,在亚音速开腔流中进行开放环路控制实验。在不稳定的流量控制的情况下,将控制焦点带入了流量的弹性修改,而不是对平均流属性的修改。因此,使用任意信号和强迫线性的强迫范围对于这种流量控制案例至关重要。从这个意义上讲,已经实施了微磁电机机电系统的线性阵列,以在开放式腔内执行开通环路控制实验。执行器能够以线性行为同时生成准稳态和脉冲喷射。我们证明了微欧洲的效率降低了腔振荡。准稳态喷气机在空腔基本振幅声压水平中降低了20 dB。脉冲喷气机启用了额外的空腔音调幅度降低,这取决于脉动频率和强迫振幅。这些结果是朝着实施开放式流量的闭环控制的第一步。
abtract:在本文中,我们介绍了在洛林盐盆地和高级 - 荷马族杂质中选择的实验地点进行的地球物理研究的合成。这些研究是在使用高分辨率地震,微重力和电阻率的技术的伴有(科学和工业)研究计划(科学和工业)研究计划的框架内进行的。该研究的目的是三倍:(1)通过增强了每种技术的生成和优化的扫描和优化程序,以增强和优化P和S地震振动源,以定义特权应用程序领域,并定义有关地球体物理数据联合解释的一般站点(3)的一般环境(3)的限制。尽管数据的质量很高,但结果证明了腔体环境中地球物理反应的复杂性,这主要是由于分辨率和腔的比例深度/维度之间的妥协以及填充的性质(盐水,水,水,空气)的性质。在泥石雷矿山的情况下,相应的地球物理异常可以与根据档案记录所知的Marlpit的确切位置相关。钻探运动已经确认在唯一高分辨率地震数据上鉴定出的Marlpit的局部崩溃。k eywords:腔,检测,人力资源,微重力,电阻率,分辨率。
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
Lanfranchi A.、Tassinato G.、Valentino F.、Martinez GA、Jones E.、Gioia C. 等人 (2022)。城市垃圾的水力空化预处理:与产酸发酵、PHA 合成和厌氧消化过程的整合。CHEMOSPHERE,301,1-9 [10.1016/j.chemosphere.2022.134624]。
图1强烈和弱耦合的LH2含有微腔的表征。(a)半透明的λ/2 fabry-pérot腔的结构,该腔由两个半透明的Au镜(22nm)组成,该镜子封闭了一个包含LH2的300 nm厚PVA层; (b)裸露的LH2膜在玻璃样品上的稳态吸收光谱,该玻璃样品具有良好的B800带和B850 LH2的B850带,高(中间,低)浓度LH2膜是使用相同的自旋涂层溶液制备的,与强(中间,虚弱)相同的LH2 CAVITY样品; (c)实验测量(散射标记)和拟合(实线)含有微腔样品的高浓度LH2的角度分散曲线; (d)含有微腔样品的高浓度LH2膜的稳态传播光谱,其中含有样品的低浓度LH2显示B850频带的分裂可忽略不计,证实了弱光 - 光接相互作用。