Viklund,Eric,David N. Seidman,David Burk和Sam Posen。 “使用离心枪抛光剂改善NB3SN空腔性能。” 超导科学与技术37,第1期。 2(2024):025009。 Viklund,Eric等。 “使用重新配置方法中NB3SN SRF腔中的愈合梯度降解”。 ARXIV预印型ARXIV:2405.00211(2024)。Viklund,Eric,David N. Seidman,David Burk和Sam Posen。“使用离心枪抛光剂改善NB3SN空腔性能。”超导科学与技术37,第1期。2(2024):025009。Viklund,Eric等。“使用重新配置方法中NB3SN SRF腔中的愈合梯度降解”。ARXIV预印型ARXIV:2405.00211(2024)。
在过去几年中,使用腔量子量子电动力学效应,即真空电磁场来修饰腔中的材料特性。但是,仍然存在稀缺的一般结果,这些结果为直观的理解和局限性提供了可以实现哪种效果的指南。我们为低能量物质激发之间的有效相互作用提供了这样的结果,或者通过它们相互耦合与腔电磁(EM)线场或通过耦合与夫妇与EMFIELD的介体模式相互耦合或间接相互作用。我们证明了诱导的相互作用本质上是纯粹的静电,因此由零频率评估的EM Green函数完全描述。我们的发现表明,使用一个或几个空腔模式减少模型可以轻松产生误导性结果。
在这项工作中,我们系统地研究了在振动强偶联条件下光腔中地面化学反应速率修饰的基础机制。我们对分子势能表面和数值确切的开放量子系统方法的对称双孔描述 - 具有矩阵乘积求解器的双空间中的运动层次方程。我们的结果预测了具有multiple振动跃迁能的强烈静脉分子系统的光子频率依赖性速率曲线中存在多个峰。速率曲线中新峰的出现归因于分子内反应途径的打开,该途径通过谐振腔模式通过腔光子浴力驱动。峰强度由动力学因子共同确定。超出了单分子极限,我们检查了两个分子与腔的集体耦合的影响。我们发现,当两个相同的分子同时耦合到相同的谐振腔模式时,反应速率将进一步提高。这种额外的增加与腔诱导的分子间反应通道的激活相关。此外,无论分子偶极矩是否在与光极化相同的方向对齐或相反的方向上,由于这些空腔促进的反应途径而引起的速率修改仍然不受影响。
半导体量子井(QW)中的subband(ISB)转变引起了很多关注,因为它们的潜在应用到了在THZ的中和远红外光谱区域工作的光电设备中。在过去30年中,这为开发量子级联激光器(QCLS)[1]和红外检测器的开发铺平了道路,要么以光导电模式(例如量子井红外光电探测器(qWIPS))[2]或在诸如potovaltaic mode中的Quantum casccade detectors(QCC)[3] [3] [3] [3]。的确,当建立ISB跃迁与微腔中的Photonic模式之间的强相互作用时,被称为ISB极化子出现的准粒子出现了[4] - [7]。这样的ISB极性不仅对基本物理学很有趣,而且还允许实施具有
量子比特和腔之间的色散相互作用在电路和腔量子电动力学中无处不在。它描述了一个量子模式响应另一个量子模式的激发而发生的频率偏移,并且在封闭系统中必然是双向的,即互易的。在这里,我们展示了一项关于 transmon 量子比特和超导腔之间非互易色散型相互作用的实验研究,这种相互作用源于与具有破坏时间反转对称性的耗散中间模式的共同耦合。我们通过原位调整铁氧体元件的磁场偏置来表征不同程度的非互易性下的量子比特腔动力学,包括不对称频率牵引和光子散粒噪声失相。我们引入了一个用于色散状态下非互易相互作用的通用主方程模型,为与中间系统无关的观察到的量子比特腔动力学提供了紧凑的描述。我们的结果提供了一个超越非厄米汉密尔顿量和级联系统典型范式的量子非互易现象的例子。
抽象的光腔在增强的光中起着至关重要的作用 - 物质相互作用,光控制和光学通信,但它们的尺寸受材料属性和操作波长的限制。超薄平面腔迫切需要大区域和集成的光学设备的需求。但是,极大地降低平面腔维度是一个关键挑战,尤其是在电信波长下。在这里,我们演示了一种基于大区域生长的Bi 2 Te 3拓扑绝缘子(TI)纳米膜的一种超薄腔,它们在近边缘区域呈现出不同的光学共振。结果表明,在电信波长时,BI 2 TE 3 Ti材料显示了超高折射率> 6。腔厚度可以接近共振波长的1/20,优于基于常规SI和GE高折射率材料的平面腔。此外,我们观察到电磁诱导的透明度(EIT)效应在电信波长上的类似物,通过将腔沉积在光子晶体上。类似EIT的行为是从纳米腔共振和TAMM等离子体之间的破坏性干扰耦合得出的。频谱响应取决于纳米腔的厚度,其调整可以产生明显的Fano共振。实验与仿真非常吻合。这项工作将为TI材料在光控制和设备中的超薄腔和应用开辟新的门。
在本文中,我们探讨了两个耦合光腔产生的压缩效应。每个腔都包含二阶非线性材料并由激光器相干泵浦。我们的结果表明,由于非线性的存在,光强度得到了极大的改善,并且主要取决于外部激光频率和腔模式之间的失谐。更有趣的是,对于腔间适度耦合,所提出的方案可以增强光压缩:一个腔产生的压缩被另一个腔增强。对于共振相互作用,在共振附近可获得最高的压缩效应。当场非共振时,压缩在所考虑腔的共振附近增加,但对于相对于第二个腔的大失谐,压缩会减小。此外,当第二个腔的耗散率小于第一个腔时,压缩可以得到改善,达到接近完美的压缩。虽然温度升高总体上对非经典光有负面影响,但对于适当的参数集,挤压对热浴表现出明显的抵抗力。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
摘要。在这项工作中,我们引入了一个新的双光谱光腔概念,我们为其设计了两对高度反射的超低噪声metamirrors。元城,由纳米结构的周期性或准周期阵列组成的人工结构,提供了对光特性的前所未有的控制,为在高级光学学术量到量子科学的领域的新应用铺平了道路。自定义阶段和超高的反射系数使这些元信息成为超越传统多层镜作为精确干扰法的元元素的理想候选者,尤其是通过最大程度地减少热噪声。这项研究中设计的聚焦元素预计将在1064 nm和1550 nm波长处反映99.95%和99.96%的传入光。他们的平面对应物甚至达到了理论上的反射,为99.9999%(1064 nm)和99.9995%(1550 nm)。这些专门的元元素可实现双光谱低噪声光腔,这将减少光学实验中的空腔数量,或者可以用作用于频率锁定的多功能传递腔。