简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
摘要牙科管理的创新方法着重于最大程度地去除细菌从龋齿病变中去除,同时最大程度地减少了牙齿组织的损失。使用腔消毒剂有效地减少了剩余细菌的数量。本研究旨在评估和比较利比亚一般牙医和专家之间不同类型的空腔消毒剂的知识,态度和实践。使用经过验证的10个项目问卷在班加西(Libya)进行了涉及151名牙医的横断面在线调查。使用卡方检验分析数据,其显着性设置为p <0.05。结果表明,氯己定(CHX)和次氯酸钠(NAOCL)是最流行的消毒剂,在参与组的知识方面存在统计学意义的差异(NAOCL),(EDTA),(EDTA)和过氧化氢。大多数参与者表示在酸蚀刻之前使用腔消毒剂,并认为可以将其用于浅腔和深腔。大多数参与者没有参加有关腔消毒的任何讲座;但是,他们对对细菌的有效性表示积极的态度。参与小组在腔消毒剂的日常实践方面没有显着差异;最常用的消毒剂是CHX,其次是NaOCl。选择合适的消毒剂需要了解消毒机制及其对修复材料键强度的影响。它必须在不损害牙本质键强度的情况下有效[14]。关键字:腔消毒剂,CHX,NAOCL,抗菌粘合剂系统,MDPB。简介树脂复合材料目前是牙科中使用最广泛的修复材料[1],研究人员正在不断努力,以最大程度地减少失败风险[2],以增强其耐用性和可靠性。文献表明,牙齿修复物主要是由于继发性龋齿[2,3]和断裂[2,4]。与其他类型的牙科修复体相比,复合修复体倾向于积累更多的生物膜[1,3,5]。此外,它们的聚合收缩增加了复合修复体对复发性龋齿的敏感性[3,6]。旧概念将龋齿视为一个渐进过程[2],它要求在整个腔中进行完整的龋齿发掘,目前是不可接受的,因为它损害了牙齿结构的生物力学完整性[2]。为避免损坏牙髓络合物[1,2],并促进牙齿结构的保存,使用微创和保守的方法存在一种趋势[1,2]。这些包括逐步和部分龋齿去除[2],尤其是在深肿瘤病变的临床情况下[5]。尽管采用了这些方法,但据报道,不可能去除所有微生物。即使挖出所有软牙本质后,一些细菌也可以持续存在[7]。研究表明,在空腔制备后,只有一小部分的腔仍然被消毒[6]。牙科管理的创新方法集中于最大程度地去除细菌从龋齿病变中[10,12],同时最大程度地减少牙齿组织的丧失[12]。腔壁中的细菌残留物会影响恢复治疗的功效;它们可以成长,尤其是在Microleakage的存在[4,6,8]中,并保留其活动,甚至在牙本质内部,持续一年多[9]。牙科修复体下的微生物生长已被认为是牙科中的重大生物学问题[10],该问题导致龋齿复发,牙髓敏感性提高(术后敏感性),牙髓炎症和边缘变色[8,11]。因此,在这种情况下,使用腔清洁剂可以提供抗菌和抗蛋白水解活性,从而有效减少剩余细菌的数量[2]。在1970年代初期,Brännström和Nyborg建议在放置恢复之前清洁腔体制备,这引起了对抗菌剂的研究及其对纸浆的影响的兴趣[13]。腔消毒剂必须是杀菌和/或抑菌性的,生物相容性的,并且易于获取和处理。然而,粘合系统与空腔消毒剂之间的相互作用在恢复性牙科中是一个有争议的问题[7]。上面提到的效果取决于每个消毒剂的特征,底物的类型,粘合剂系统和所使用的修复材料[14]。例如,由于缺乏灌溉步骤和涂片层的去除,因此更需要对自我键合系统中的空腔进行消毒[9,15]。
Tivadar Lohner 1 、Attila Németh 2 、Zsolt Zolnai 1 、Benjamin Kalas 1 、Alekszej Romanenko 1 、Nguyen Quoc Khánh 1 、Edit Szilágyi 2 、Endre Kótai 2 、Emil Agócs 1 、Zsolt Tóth 3 、Judit Budai 4,5 、Péter Petrik 1,* 、Miklós Fried 1,6 、István Bársony 1 和 † József Gyulai 1
个人简介:David Vitali 于 1988 年毕业于比萨大学物理学专业,并于 1994 年获得比萨高等师范学院物理学博士学位。他曾担任北德克萨斯大学(美国)、巴黎高等师范学院、昆士兰大学、布里斯班(澳大利亚)和维也纳大学的客座讲师。自 2015 年起,他担任卡梅里诺大学理论物理学教授。他在国际同行评审期刊上发表了 193 篇出版物,引用次数超过 10700 次,Hirsch 指数 h = 52(SCOPUS 数据库)。他在量子光学和量子信息理论的许多子领域开展了研究,例如纠缠操控、量子通信和量子密钥分发、量子技术的量子光学实现。 2015 年,他被任命为美国物理学会 APS 会士,表彰他“在腔光力学方面的开创性工作,为量子信息处理和量子受限传感提供了理想而灵活的环境;提出了控制量子系统退相干的开创性技术。” 2021 年,他被提名为 OPTICA 高级会员,并协调了多个欧洲项目和许多国家项目,这些项目均与量子技术和量子光力学有关。
背景:自动脑肿瘤分割方法是一种计算算法,可从多模态磁共振成像 (MRI) 中勾画出肿瘤轮廓。我们介绍了一种使用深度学习 (DL) 技术对多形性胶质母细胞瘤 (GBM) 患者的切除腔 (RC) 进行自动分割的方法及其结果。方法:纳入 30 名 GBM 患者的术后、有无造影的 T1w、T2w 和液体衰减反转恢复 MRI 研究。三位放射肿瘤学家手动勾画了 RC 以获得参考分割。我们开发了一种 DL 腔分割方法,该方法利用所有四个 MRI 序列和参考分割来学习执行 RC 勾画。我们根据 Dice 系数 (DC) 和估计体积测量值评估了分割方法。
1 无锡大学留学生学院,无锡 214105,中国;grasool@zju.edu.cn 2 北京工业大学材料与制造学院智能机械研究所,北京 100124,中国 3 卡西姆大学理学院数学系,布赖达 51452,沙特阿拉伯;abdulkafi.ahmed@qu.edu.sa 4 联邦理工大学数学科学系流体动力学与测量研究组,阿库雷 PMB 704,尼日利亚; anizakph2007@gmail.com 5 马斯卡拉大学数学量物理与数学建模实验室 (LPQ3M),马斯卡拉 29000,阿尔及利亚 6 乌姆阿尔古拉大学工程与伊斯兰建筑学院机械工程系,邮政信箱 5555,麦加 21955,沙特阿拉伯;kmguedri@uqu.edu.sa 7 维贾亚纳加拉斯里克里斯纳德瓦拉亚大学数学系,巴拉里 583105,卡纳塔克邦,印度;hanumeshvaidya@gmail.com 8 哈立德国王大学科学学院化学系,邮政信箱 9004,阿卜哈 61413,沙特阿拉伯;rmarzouki@kku.edu.sa * 通信地址:a.aissa@univ-mascara.dz
引入激光束的特征辐射与物质的相互作用(诱导的吸收,自发发射,刺激发射)爱因斯坦的A和B系数和B系数和能量密度的表达。 LASER Action and the Conditions for LASER action (Population Inversion and Pumping, meta- stable state ) Requisites of a LASER system(Energy Source or Pumping Mechanism, Active medium and Resonant cavity (or) LASER cavity) Semiconductor LASER or Diode LASER (Principle, construction and working) Applications of LASER (LASER Barcode Reader, LASER打印机,激光冷却)模型问题和数值问题
石油和天然气复合物的开发与提取的碳氢化合物的运输方法的改善密不可分。使用内部光滑涂料是提高运输天然气系统效率的方法之一。这些涂层允许降低气体运输成本,并在附加的内部管道腔免受腐蚀损伤中保护。由于将天然气产量转移到远北的趋势,其负温度非常低,并且在运输的天然气中将较重的碳氢化合物组件的比例增加,因此有必要提出新的技术解决方案,以确保在新条件下主要的天然气管道的有效运行。作者建议研究使用以前尚未用于气管道的荧光塑料涂层的可能性,并被认为是有希望的。本文介绍了对使用的环氧涂层和施加在钢板表面上的有希望的荧光塑料涂层的比较分析。将环氧涂层应用于板的表面,该表面通过沙蓝色清洁,在使用低粘合性能的荧光塑料涂层之前,准备板表面以确保通过初步激光处理和随后的冷磷脂确保牢固的粘合键。在工作过程中,进行了对涂料的物理和机械特征的研究,包括确定正常和负温度下涂层的影响强度,以及通过Erickson方法确定弹性,以及确定弯曲强度,弯曲强度和等效粗糙度的确定。根据研究的结果,与环氧涂层相比,在低温下,荧光塑料涂层具有更大的弹性,弯曲强度和冲击强度。此外,还发现,荧光塑料涂层在等效粗糙度方面不如环氧涂层,这会影响液压抗性的量。因此,这项工作给出了将荧光塑料涂层作为内部光滑涂层的相关性,以确保在负温度的条件下,气管道的效率更高,同时增加了运输气体中较重的碳氢化合物组件的比例。关键词:气管管道,荧光塑料涂层,环氧涂层,平滑涂层,冲击强度,涂层弹性,等效的粗糙度系数。doi:10.17580/cisisr.2024.02.16
人类的肌肉束具有同步神经感觉的多功能运动,使人可以执行复杂的任务,这激发了对机器人动作和感知机器人的功能整合的研究。尽管使用固有的依从性,软动力器已经开发了多种运动能力,但同时使用的方法通常涉及添加感应组件或嵌入某些信号的底层基质,从而导致结构复杂性和具有高度变化的部分的驱动部分之间的结构复杂性和差异。受到肌肉束多纤维机制的启发,提出了一种多腔功能整合(MCFI)方法,用于软气动执行器,以同时实现多维运动并通过分离和协调主动和被动腔来感知。引入了一个由生物启发的交织可折叠内体(Bife),以使用优化的目的可折叠性来构建和加强多腔室,从而实现3D打印单物质制造。执行伸长,收缩和双向弯曲,以基于基于多腔压力的运动学和感应模型感知其空间位置,方向和轴向力。建立了两个MCFI-ACTUATOR驱动的机器人:一个具有路径重建的软爬行机器人,具有对象外部感受的狭窄节流柔软的握把,验证了执行执行器的实用性以及对MCFI方法的智能软机器人创新的潜在的潜力。
单位-1单位生态位置面对观察者,头部水平,眼睛向前。这是书中的图像看起来俯卧:仰卧:朝向面朝上上级:身体的上部:身体下部:身体下部:•前部:接近前方或在前部或前部:接近或接近或背面身体•从内线:近距离(以后分为2)•求发: 2结构lpsilatral:身体的同一侧与另一个结构对侧:在另一个结构的另一侧近端:靠近结构的起源。Near to the attachment of a limb Distal: away from the attachment of a limb to the trunk Superficial: toward or on the surface of the body Deep (internal): away from surface of the body Terminology and General Plan of the Body, Body Parts and Areas, Terms of Location and Position, Body Cavities and Their Membranes, Dorsal cavity, Ventral cavity, Planes and Sections, Cells: Structure, function and location, Prokaryotic and真核细胞,细胞细胞器,细胞分裂。
