AA:辅助活动29 A. Goss。 :Ashbya Gossypii 30 Cazy:碳水化合物活性酶数据库31 Cazyme:碳水化合物活性酶32 CBM:碳水化合物结合模块33 CE:碳水化合物酯酶34 C. PIN。 :Chitinophaga Pinensis 35 C. Vacc。 : Chromobacterium vaccinii 36 FTIR: Fourier Transform InfraRed (spectroscopy) 37 G. alk.. : Gordonia alkanivorans 38 GH: Glycoside Hydrolase 39 GT: Glycosyltransferase 40 LAP: L-Leucine-7-amido-4-methylcoumarin hydrochloride 41 OD: Optical density 42AA:辅助活动29 A. Goss。:Ashbya Gossypii 30 Cazy:碳水化合物活性酶数据库31 Cazyme:碳水化合物活性酶32 CBM:碳水化合物结合模块33 CE:碳水化合物酯酶34 C. PIN。:Chitinophaga Pinensis 35 C. Vacc。: Chromobacterium vaccinii 36 FTIR: Fourier Transform InfraRed (spectroscopy) 37 G. alk.. : Gordonia alkanivorans 38 GH: Glycoside Hydrolase 39 GT: Glycosyltransferase 40 LAP: L-Leucine-7-amido-4-methylcoumarin hydrochloride 41 OD: Optical density 42
*地址为:jgordon@wustl.edu。作者贡献O.D-B。和J.I.G.设计了gnotobiotic小鼠研究。A.C.H. 监督了肥胖人类供体的粪便样品,用于殖民无菌小鼠。 O.D-B。 和N.H.进行了动物研究。 M.J.B.,S.K.,O.D-B。 和J.I.G. 与D.K.H.一起设计了人类研究。和S.V. 谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。 a.m.和S.V. 纤维制剂的有组织的碳水化合物和糖苷连接组成分析。 S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。A.C.H.监督了肥胖人类供体的粪便样品,用于殖民无菌小鼠。O.D-B。 和N.H.进行了动物研究。 M.J.B.,S.K.,O.D-B。 和J.I.G. 与D.K.H.一起设计了人类研究。和S.V. 谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。 a.m.和S.V. 纤维制剂的有组织的碳水化合物和糖苷连接组成分析。 S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。O.D-B。和N.H.进行了动物研究。M.J.B.,S.K.,O.D-B。 和J.I.G. 与D.K.H.一起设计了人类研究。和S.V. 谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。 a.m.和S.V. 纤维制剂的有组织的碳水化合物和糖苷连接组成分析。 S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。M.J.B.,S.K.,O.D-B。和J.I.G.与D.K.H.一起设计了人类研究。和S.V.谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。a.m.和S.V.纤维制剂的有组织的碳水化合物和糖苷连接组成分析。S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。受控饮食研究。与K.K.一起和T.W.J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。J.J.C.,G.C。和C.B.L.对小鼠饮食和粪便样品进行了质谱测定。J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。O.D-B。监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。M.C.H.和C.D.实现了宏基因组装/注释管道。D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。D.A.R.,S.A.L。和A.O.进行了粪便微生物的McSeed途径重建,而V.L.和B.H.提供了cazyme注释。A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。A.S.R.开发了HOSVD和R.Y.C.O.D-B。 和R.A.B. 分析了数据。O.D-B。和R.A.B.分析了数据。应用于由小鼠和人类生成的数据集的CC-SVD分析平台。对人类研究产生的血浆蛋白质组数据集进行了COMPBIO分析。o.d-b。,C.D.,M.J.B。和J.I.G.O.D-B。 和J.I.G. 在合着者提供的协助下写了这篇论文。O.D-B。和J.I.G.在合着者提供的协助下写了这篇论文。
方法:本研究从Gracilaria coronopifolia中经过富集培养、初筛和复筛获得菌株GDSX-4,并初步通过形态学和16SrDNA对其进行表征。对菌株GDSX-4纯培养物进一步进行细菌基因组测序组装和生物信息学分析。具体来说,利用同源组簇(COG)注释、CAZy(碳水化合物活性酶)数据库注释和CAZyme基因组簇(CGCs)注释来识别潜在的多糖降解功能。在不同条件下评估酶活性,包括底物、温度、pH和金属离子的存在。使用薄层色谱法(TLC)和电喷雾电离质谱法(ESI-MS)分析水解产物。