摘要肿瘤的存在可以系统地改变宿主免疫。一个部位中的免疫肿瘤相互作用可能会通过循环影响远端组织中的局部免疫微环境,因此影响免疫疗法对远处转移的疗效。在转移性环境中,在免疫疗法治疗期间对免疫肿瘤相互作用的了解可以增强当前免疫疗法的疗效。在这里,我们研究了67nr鼠乳腺肿瘤对αPD-1/αctla4和trimab(αdr5,α4-1Bb,αCD40)的反应,该反应同时在乳腺癌脂肪垫(MFP)中同时生长,并在肺部(MFP)和肺部(与乳腺癌转移的常见部位)与肿瘤的肺部相比,与肿瘤中的乳腺癌相比。分离出的肺肿瘤对两种疗法都有抗性。然而,在MFP和肺肿瘤轴承小鼠中,MFP肿瘤的存在可能会增加肺部肿瘤对免疫疗法的反应并减少肺转移的数量,从而完全消除一部分小鼠肺部肿瘤。MFP肿瘤对肺转移酶的影响是由CD8 + T细胞介导的,因为CD8 + T细胞的耗竭消除了肺转移的差异。此外,具有MFP和肺肿瘤的小鼠具有肿瘤特异性,效应子CD8 + T细胞的增加。因此,我们提出了一个模型,其中免疫原性的肿瘤可以引起全身性抗肿瘤CD8 + T细胞反应,该反应可用于靶向转移性肿瘤。这些结果强调了临床考虑原发性和转移性肿瘤之间对癌症对癌症的有效免疫疗法的要求,原本可以抵抗免疫疗法。
• 肿瘤特异性 CD8 + T 细胞(TST)共同表达升高的 CD25(IL-2Rα)和 PD-1,并且更容易受到 IL-2R α-bias 激动剂的刺激。
摘要:目的:探讨PD-1抑制剂联合抗血管生成药物对非小细胞肺癌(NSCLC)患者疗效及免疫功能的影响。方法:回顾性分析2020年5月至2021年8月某地区中医院收治的60例NSCLC患者临床资料。其中,接受信迪利单抗联合安罗替尼治疗的患者23例为A组,接受信迪利单抗治疗的患者20例为B组,单纯接受安罗替尼干预的患者17例为C组。比较三组临床有效率、客观缓解率(ORR)及疾病控制率(DCR)的变化。评估治疗前及治疗6周后患者分化簇4(CD4)+ 、分化簇8(CD8)+ 及CD4 + /CD8 + 水平。计算无进展生存期(PFS),并采用Cox回归分析影响预后因素。评价三组免疫治疗的不良反应。结果:三组间ORR无明显差异(P>0.05)。A组DCR比例显著高于B、C组(P<0.05)。治疗后CD4+、CD4+/CD8+水平显著升高,A组CD8+水平低于其他两组(P<0.05)。三组间免疫相关不良反应发生率差异无统计学意义(P>0.05)。患者中位PFS为6.03个月。Cox回归分析显示,美国东部肿瘤协作组评分、肿瘤转移及治疗方案是影响PFS的独立预后因素。结论:信迪利单抗联合安罗替尼可有效改善NSCLC患者的DCR、延长PFS,且该方案不会增加治疗期间的免疫相关不良反应。
肿瘤微环境的免疫抑制是有助于肿瘤进展和免疫疗法抗性的关键因素。启动肿瘤免疫微环境(时间)已成为改善癌症免疫疗法效率的有前途的策略。在这项研究中,我们研究了非毒性射频辐射(RFR)暴露对肿瘤进展和时间表型的影响,以及在肺转移性黑色素瘤模型(PMM)模型中PD-1阻滞的抗肿瘤潜力。PMM的小鼠模型是通过尾静脉注射B16F10细胞建立的。 从注射后的第3天开始,将小鼠以平均特定的吸收率为9.7 W/kg,每天1小时,持续14天。 RFR暴露后,收集肺组织,并提取RNA进行转录组测序。分离PMM - 纤维化免疫细胞进行单细胞RNA-seq分析。 我们表明,RFR暴露显着阻碍了PMM进展,并通过改变肿瘤 - 纤维编织免疫细胞的比例和转录表现,并伴随着PMM的重塑时间。 rfr暴露增加了肿瘤 - 纤维化CD8 + T细胞的激活和细胞毒性特征,尤其是在早期激活子集中,具有与T细胞细胞毒性相关的上调基因。 CD8 + T细胞中RFR暴露在PD-1检查点途径上调。 RFR暴露还增加了NK细胞亚群,并在PMM中具有增加的细胞毒性特征。 rfr暴露增强了肿瘤 - 纤维纤维CD8 + T细胞和NK细胞的效应子功能,从而证明了细胞毒性分子的表达增加。PMM的小鼠模型是通过尾静脉注射B16F10细胞建立的。从注射后的第3天开始,将小鼠以平均特定的吸收率为9.7 W/kg,每天1小时,持续14天。RFR暴露后,收集肺组织,并提取RNA进行转录组测序。分离PMM - 纤维化免疫细胞进行单细胞RNA-seq分析。我们表明,RFR暴露显着阻碍了PMM进展,并通过改变肿瘤 - 纤维编织免疫细胞的比例和转录表现,并伴随着PMM的重塑时间。rfr暴露增加了肿瘤 - 纤维化CD8 + T细胞的激活和细胞毒性特征,尤其是在早期激活子集中,具有与T细胞细胞毒性相关的上调基因。CD8 + T细胞中RFR暴露在PD-1检查点途径上调。RFR暴露还增加了NK细胞亚群,并在PMM中具有增加的细胞毒性特征。rfr暴露增强了肿瘤 - 纤维纤维CD8 + T细胞和NK细胞的效应子功能,从而证明了细胞毒性分子的表达增加。RFR激活的CD8 + T细胞和NK细胞介导 RFR诱导的PMM生长抑制作用。 我们得出的结论是,非侵入性RFR暴露会诱导时间的抗肿瘤重塑,从而导致抑制肿瘤进展,这为时间启动和潜在的与癌症免疫疗法结合提供了有希望的新型策略。RFR诱导的PMM生长抑制作用。我们得出的结论是,非侵入性RFR暴露会诱导时间的抗肿瘤重塑,从而导致抑制肿瘤进展,这为时间启动和潜在的与癌症免疫疗法结合提供了有希望的新型策略。
图 1 COVID-19 康复患者的 SARS-CoV-2 刺突特异性 T 细胞反应。 (A-D) 散点图显示与基础水平相比,COVID-19 康复者的 T 细胞亚群 (CD8+ 或 CD4+) 频率在 SARS-CoV-2 刺突肽池隔夜刺激后产生细胞因子 (TNF α、IFNγ)。 (E-H) 患有肥胖症 (PWO) 或不患有肥胖症 (对照个体) 的 COVID-19 康复者的 T 细胞亚群 (CD8+ 或 CD4+) 频率在 SARS-CoV-2 刺突肽池隔夜刺激后产生细胞因子 (TNF α、IFNγ)。 (I - L)患有肥胖症 (PWO) 或不患有肥胖症 (对照个体) 的 COVID-19 康复者中 T 细胞亚群 (CD8 + 或 CD4 + ) 的频率,这些亚群在用 SARS-CoV-2 膜肽池进行隔夜刺激后产生细胞因子 (TNF α 、IFN γ)。条形表示中位数。使用 Wilcoxon 检验对配对数据 (面板 AD) 进行跨队列统计比较,使用 Mann – Whitney U 检验对非配对数据 (面板 EL) 进行统计比较。 (面板 EL) 的数据是从阴性对照中减去背景的。PWO,肥胖人群 [彩色图可在 wileyonlinelibrary.com 上查看]
引入了抗逆转录病毒疗法(ART)针对HIV的发展和快速发展,但在过去的3年中,尚无功能治愈方法。这是由于存在完整且可诱导的病毒,该病毒被整合在感染细胞中,并且没有免疫系统看到,因此尽管有ART(1-3),因此允许病毒持久性(1-3)。识别可以将潜在病毒重新激活(或冲击)潜在病毒重复复制的小分子的努力,从而使细胞可以被免疫效应细胞看到和消除,这仍然是当今研究的前端。我们先前已经描述了小分子3-羟基-1,2,3-苯并三嗪-4(3H)-ONE(HODHBT)能够增强细胞因子介导的STAT信号传导(4)。我们最初通过筛选可以在潜伏期的主要细胞模型中重新激活潜在HIV的化合物(5)。我们先前的研究表明,HODHBT能够增加细胞因子诱导的磷酸化STAT5(PSTAT5),从而导致PSTAT5与HIV长期重复(LTR)的结合增强。这导致了原发性CD4 T细胞的病毒式术语激活和潜伏期逆转(4)。然后,我们描述了结构类似物1,2,3-苯并三嗪-4(3H)-One(HBT)缺乏生物学活性,表明3-羟基在这些化合物的生物学活性中的重要性。此外,我们证明了Hodhbt缺乏小鼠的急性毒性,并且不会促进全球免疫激活(6)。但是,HODHBT的直接靶标仍然未知。在这里,为了识别HODHBT目标候选者,我们使用了热蛋白质组学分析(TPP)(9-11)。在后续研究中,我们表明HODHBT增强了IL-15对(a)在NK细胞中促进IFN-γ和颗粒酶B产生的能力,导致对HIV感染的细胞和癌细胞系的细胞毒性活性增加,并增强(b)通过增强HIV的CD8 TERMIN CD8 TERNIM的CD8 TERMIN TERMI的CD8 TERME-CD8 TERME-CD8 TERME,并增强CD8的表达。靶细胞(8)。2个最高命中是非受体酪氨酸磷酸酶(NTPS)蛋白酪氨酸磷酸酶非受体1型(PTPN1)和2型(PTPN2),以其在STAT信号
摘要 背景 免疫治疗对表皮生长因子受体 (EGFR) 突变型非小细胞肺癌 (NSCLC) 患者的疗效较差。据报道,程序性细胞死亡配体 1 (PD-L1) 表达和肿瘤突变负荷 (TMB) 较低是潜在机制。作为影响免疫治疗疗效的另一个重要因素,迄今为止尚未全面了解该 NSCLC 亚组的肿瘤微环境 (TME) 特征。因此,我们发起了这项研究,从细胞组成和功能角度描述 EGFR 突变型肺腺癌 (LUAD) 的具体 TME,以更好地了解这种最常见 NSCLC 亚型的免疫状况。方法我们使用单细胞转录组测序和多重免疫组织化学来研究 EGFR 突变型和 EGFR 野生型 LUAD 的免疫微环境并确定免疫治疗的疗效。我们分析了来自九个未接受治疗样本的单细胞,并使用生物信息学方法将它们与之前从单细胞角度报道的三个免疫治疗后样本进行了比较。结果我们发现 EGFR 突变的恶性上皮细胞具有与无反应者的上皮细胞相似的特征。EGFR 突变的 LUAD 缺乏 CD8 + 组织驻留记忆 (TRM) 细胞,该细胞可通过分泌 CXCL13 促进三级淋巴结构的生成。此外,能够在 TME 中募集、保留和扩增 CD8 + TRM 细胞的其他细胞类型,在 EGFR 突变的 LUAD 中也是缺乏的。此外,与 EGFR 野生型 LUAD 相比,EGFR 突变的 LUAD 通过程序性细胞死亡-1 (PD-1) 和 PD-L1 或其他免疫检查点的 T 细胞与其他细胞类型之间的串扰明显较少。结论:我们的研究结果在单细胞水平上全面揭示了EGFR突变型LUAD的免疫状况。基于研究结果,许多细胞成分可能通过影响CD8 + TRM对EGFR突变型LUAD的特定TME产生负面影响。CD8 + TRM的缺乏可能是导致EGFR突变型LUAD抑制性TME的关键因素。
我们开发了针对SARS-COV-2的全球肽疫苗,该疫苗解决了不同个体的免疫反应中异质性的双重挑战以及感染病毒的潜在异质性。polypepi-SCOV-2是一种多肽疫苗,其中含有从SARS-COV-2的所有主要结构蛋白中得出的9个30-MER肽。疫苗肽是根据其频率作为HLA I类和II类个人表位(PEPIS)的频率选择的,仅限于个体的多个自体HLA等位基因,以不同种族的433名受试者的硅群中。polypepi-SCOV-2疫苗用山烷基ISA 51VG辅助剂量产生的鲁棒,Th1偏置的CD8 +和CD4 + T细胞反应,针对病毒的所有四种结构蛋白,以及在BALB/C/C和CD34 + Transgenic Mice中的抗生素上的所有四种结构蛋白。此外,在症状发作后1-5个月,在17个无症状/轻度Covid-19康复研究中,在17个无症状/轻度COVID-19康复研究中,在17个无症状/轻度Covid-19康复研究中检测到多功能CD8 +和CD4 + T细胞的多功能CD8 +和CD4 + T细胞。用于从Covid-19中恢复的polypepi-Scov-2特异性T细胞库非常多样化:供体平均具有7种不同的肽特异性T细胞,针对SARS-COV-2蛋白;有87%的捐助者对至少三个SARS-COV-2蛋白有多个目标,而对所有四个蛋白质的目标为53%。此外,还基于康复供体的完整HLA I类基因型确定的PEPIS以84%的精度进行了验证,以预测为个体测量的PEPI特异性CD8 + T细胞反应。将上述发现外推向美国的骨髓供体队列16,000个具有16个不同种族的基因型个体(每个种族n = 1,000个种族)表明,普雷比皮 - scov-2疫苗接种polypepi-scov-2疫苗接种一般人群中的polypepi-scov-2 (bame)队列。将上述发现外推向美国的骨髓供体队列16,000个具有16个不同种族的基因型个体(每个种族n = 1,000个种族)表明,普雷比皮 - scov-2疫苗接种polypepi-scov-2疫苗接种一般人群中的polypepi-scov-2 (bame)队列。
摘要................. ... ................. ... 488 A. 经典 Janus 激酶/信号转导和转录激活因子 3 信号传导 ..................................488 1. Janus 激酶........................................................................................................................................................488 2. 信号转导和转录激活因子蛋白.................................................................................................................................. . . . . . . . . 489 3. 典型 Janus 激酶/信号转导和转录激活因子 3 信号的负向调控. . . . . . . . . . . . . . . . . . . . . 490 4. 信号转导和转录激活因子 3 的翻译后修饰. . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 1. 磷酸酪氨酸 705 – 未磷酸化的信号转导子和转录激活子3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 2. 线粒体信号转导子和转录激活子3. . . . . . . . . . . . . . . . . . . . 493 3. 血小板中的支架功能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. . . . . . . . . . . . 494 A. Janus 激酶/信号转导和转录激活因子 3 在造血和免疫细胞功能中的作用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... .................................................................................................................................................................. 499 8. CD81T 细胞.................................................................................................................................................................... .... 499 8. CD8 1 T 细胞. .... 499 8. CD8 1 T 细胞. ...
