2历史11 2.1早期:水手和维京人。。。。。。。。。。。。。12 2.2年龄的到来:Voyager。。。。。。。。。。。。。。。。。。。。。16 2.3创新和解决方法:伽利略。。。。。。。。。。。。。。18 2.4地标:附近的鞋匠。。。。。。。。。。。。。。。。。21 2.5到期:卡西尼。。。。。。。。。。。。。。。。。。。。。。。。。22 2.6自治:深空1,星尘,深影响。。。。。。。23 2.7飞行硬件。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.8发展技术的发展。。。。。。。。。。。。。。27 2.9星目录。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.10立体局限器法。。。。。。。。。。。。。。。。。。。。。。29 2.11未来的任务。。。。。。。。。。。。。。。。。。。。。。。。。。30 2.12 JPL外的光导航。。。。。。。。。。。。。。。。。30 2.13摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31
对于接受激光椎间盘切除术的椎间盘源性背痛或神经根病患者,证据包括观察性研究的系统评价。相关结局包括症状、功能结局和治疗相关发病率。虽然许多病例系列和非对照研究报告了激光椎间盘切除术后疼痛程度和功能有所改善,但缺乏精心设计和实施的对照试验限制了对报告数据的解释。证据不足以确定该技术是否改善了净健康结果。对于接受射频冷凝椎间盘核成形术的椎间盘源性背痛或神经根病患者,证据包括随机对照试验 (RCT)、系统评价以及前瞻性和回顾性非随机研究。相关结局包括症状、功能结局和治疗相关发病率。对于核成形术,除了几项非对照研究外,还有三项 RCT。这些 RCT 的局限性在于缺乏盲法、一项试验的控制条件不足、第二项试验的数据报告不足以及第三项试验的入组率低且提前终止研究。由于多种混杂因素可能导致结果偏差,现有证据不足以得出有关这些手术对健康结果影响的结论。需要进行高质量的随机试验,并进行充分的随访(至少一年),以控制选择偏差、安慰剂效应和腰痛自然病程的变化。证据不足以确定该技术是否能改善净健康结果。计费/编码/医生文档信息
I.简介1。本报告概述了OIC -2025:行动计划的实施进展,外交大臣理事会,COMCEC和其他部长级的OIC会议的相关决议,自第39届COMCEC召开会议召集以来2。该报告提供了有关在农业和粮食安全等领域实施OIC计划和项目的范围内努力的最新信息;贸易和投资;旅游发展;在审查期间,贫困减轻和能力建设以及经济领域中的OIC协议签署和批准。它还包括相关的OIC机构的贡献,并突出了他们进行的一系列活动。
动态目标定位 (DT) 是一种航天器自主概念,其中传感器数据被获取并快速分析,并用于驱动后续观察。我们描述了这种方法的低地球轨道应用,其中分析前瞻图像以检测云、热异常或陆地用例,以推动更高质量的近天底成像。这种能力的用例包括:云避开、风暴搜寻、搜索行星边界层事件、羽流研究等。DT 概念需要前瞻传感器或敏捷性以在这种模式下使用主传感器、边缘计算以快速分析机载图像以及主后续传感器。此外,可以利用卫星间或低延迟通信链路进行跨平台任务处理。我们描述了正在进行的实施,以便在 2025 年初在 CogniSAT-6(Ubotica/Open Cosmos)航天器上飞行 DT,该航天器于 2024 年 3 月在 SpaceX Transporter-10 发射中发射。
摘要。由于复合材料在强度、刚度和密度方面可以进行定制,因此在航空航天领域是一种宝贵的商品。但是,复合材料也会随着时间的推移而变质,就像其他材料一样,特别是在太空等恶劣条件下。飞机环境中温度突然变化引起的热降解会导致复合材料的尺寸变化、开裂甚至分解,这些降解问题可能会影响复合材料在航空航天中的应用。在本研究中,对碳/酚醛复合材料进行了热重分析 (TGA),作为纤维使用平纹碳纤维 (Kyoto - 碳),作为基质使用 ARMC-551-RN 酚醛树脂。此外,测试方法参考 ASTM E1131-08 标准。热重成分分析测试方法。最终,工程师希望通过使用 TGA 分析来了解用于航天器部件的碳/酚醛复合材料的热特性和稳定性,从而改善航天器的设计、可靠性和严酷太空任务的安全性。
强化学习(RL)是一个高度适应性的框架,用于在广泛的问题领域中产生自主代理。虽然RL已成功地应用于高度复杂的现实世界系统,但大量文献研究了抽象和理想化的问题。尤其是航天器任务领域的情况,在这种情况下,即使是传统的预备方法也倾向于使用高度简化的航天器动力学和操作模型。当在全面模拟中测试简化的方法时,它们通常会导致保守的解决方案,这些解决方案是不可行的次优或侵略性解决方案。因此,需要高保真的航天器仿真环境来评估基于RL的和其他任务算法。本文介绍了BSK-RL,BSK-RL是一种开源Python软件包,用于为航天器任务问题创建和自定义加固学习环境。它结合了Basilisk(一种高速和高保真的航天器仿真框架)与RL环境的标准体育馆API包装器中的卫星任务和操作目标的抽象相结合。该软件包旨在满足RL和航天器操作研究人员的需求:环境参数易于重现,可自定义和随机化。环境是高度模块化的:可以指定卫星状态和操作空间,可以定义任务目标和奖励,并且可以配置卫星动力学和飞行软件,并隐式地引入操作限制和安全限制。可以为考虑沟通和协作的更复杂的任务场景而创建异质的多机构环境。使用包装的培训和部署用于具有资源限制的地球观察卫星。
摘要 - 近年来,人们对在轨道内运营(例如更新,停靠和接近操作)的自主权的需求不断增长,从而导致人们对采用深度学习的飞船姿势估计技术产生了兴趣。但是,由于对实际目标数据集的访问有限,算法通常是使用合成数据训练并应用于真实域中的,因此由于域间隙而导致性能下降。最新方法采用域适应技术来减轻此问题。在搜索可行解决方案中,过去探索了事件感应,并显示出可减少模拟和现实世界情景之间的域间隙。事件传感器近年来在硬件和软件方面取得了重大进步。此外,与RGB传感器相比,事件传感器的特性在空间应用中具有多个优势。为了促进基于DL的模型的进一步培训和评估,我们介绍了一个新的数据集,包括在受控的实验室环境中获得的真实事件数据,并使用相同的摄像机内在系统模拟了事件数据。fur-hoverore,我们引入了一个基于图像的事件表示形式,该表示的性能优于现有表示形式。此外,我们提出了一种有效的数据过滤方法,以提高培训数据的质量,从而提高模型性能。使用不同的事件表示,事件过滤策略和算法框架进行了多方面的基线评估,并总结了结果。数据集将在http://cvi2.uni.lu/spades上提供。
对于月球表面的开发,日本国内外都在开发月球轨道站 (Gateway)、月球着陆器和月球探测车。此外,还正在研究旨在在月球表面生活的建筑和发电技术。特别是,为载人操作而设计的系统需要配备防护结构,以防可能来袭的微流星体和轨道碎片 (MMOD) 造成人员伤亡 (1)。载人航天器的典型 MMOD 防护结构是惠普尔防护罩,由称为“保险杠”的板和后壁组成,保险杠通过隔离物 (2) 连接到后壁的外表面,如图 1 (a) 所示。目前运行的国际空间站(ISS)日本实验舱(JEM)和H-II转移飞行器(HTV)均采用了三菱重工株式会社开发的MMOD防护结构,没有因微流星体或空间碎片撞击而出现功能损坏(图1(b))。
• J8 致业界备忘录 • ICD/需求框架 • 建立 USSPACECOM 业界参与门户 • 促进与军事部门、各作战司令部、政府机构、国家实验室、盟友、学术伙伴和创新组织的合作 • 提供支持信,协助为追求符合 USSPACECOM 挑战和优先需求能力的小型企业制定谅解备忘录和合作协议 • 帮助商业行业弥合当前 SBIR/STTR 第二阶段工作之间的“死亡之谷”能力差距,从而实现 SBIR/STTR 第三阶段的扩展工作,促进战略能力的交付