居住的记忆T细胞(T RM细胞)已成为黑色素瘤和其他实体瘤抗肿瘤免疫的有趣研究主题。在抗肿瘤免疫的初始阶段,它们保持免疫平衡,并防止肿瘤细胞和原发性黑色素瘤形成的挑战。在转移性环境中,它们是免疫检查点抑制(ICI)的主要靶细胞群体,因为它们高表达抑制性检查点分子,例如PD-1,CTLA-4或LAG-3。一旦用ICI治疗黑色素瘤患者,居住在肿瘤中的T RM细胞就会重新激活并扩展。肿瘤杀死是通过分泌效应子分子(例如ifng g)来实现的。但是,还观察到脱靶效应。免疫相关的不良事件,例如影响皮肤等屏障器官的不良事件,可以通过ICI诱导的T RM细胞介导。因此,对这种记忆T细胞类型的详细理解是必须更好地指导和改善免疫疗法方案。
引言器官,干细胞和组织捐赠是20世纪最大的医学进步之一。他们对许多人和人类的总体和人类的生活质量显着延长了预期寿命和改善的生活质量。捐赠和移植实践受到平等和照顾义务等几种道德原则的管辖。但是,器官,干细胞和组织捐赠仍然面临四个主要障碍:捐赠短缺,不道德的做法,可访问性差异以及医学生和临床医生的不合格医学教育系统。可用细胞,组织和器官的短缺是由于缺乏人口同意捐赠而引起的。不安全的捐赠程序可以归因于医疗保健专业人员和效率低下的捐赠系统的低护理质量。不道德的捐赠实践通常会忽略捐赠的自愿性质,并沉淀出可用器官和组织的不平等分配。
最近的研究表明,代谢重编程通过色氨酸分解代谢的犬尿氨酸途径 (KP) 在癌症相关药物耐药性中发挥着关键作用。该途径由吲哚胺 2,3-双加氧酶 1 (IDO1) 驱动,通过营造免疫抑制环境促进免疫逃避并促进肿瘤进展。在 IDO1 抑制剂与免疫检查点抑制剂 (ICI) 联合使用的 III 期研究中,联合疗法无效。在这篇综述中,我们回顾了当前的进展,探索了未来的方向,并强调了在适当的患者群体中双重抑制 KP 限速酶 IDO1 和色氨酸 2,3-双加氧酶-2 (TDO2) 的重要性。我们认为双重抑制可以最大限度地发挥 KP 抑制的治疗潜力。此外,我们还深入研究了癌症中复杂的细胞相互作用以及肿瘤微环境 (TME) 内的代谢依赖性。我们将讨论临床前研究、最近的临床试验和有前景的治疗组合的见解,以阐明和促进 KP 研究癌症相关结果的明确方向。
三阴性乳腺癌(TNBC)是乳腺癌的亚型,由于缺乏雌激素受体(ER),孕酮受体(PR)和人类表皮生长因子受体受体2(HER2)表达而引起了显着的治疗性挑战。因此,常规的荷尔蒙和靶向疗法在很大程度上无效,强调了对新型治疗策略的迫切需求。gd T细胞以鲁棒的抗肿瘤特性而闻名,在TNBC治疗中显示出巨大的潜力,因为它们可以识别和消除肿瘤细胞而不依赖MHC限制。这些细胞在体外和体内表现出广泛的增殖,并且可以通过细胞毒性作用或通过促进其他免疫反应直接靶向肿瘤。研究表明,针对V D 2和V D 1 GD T细胞亚型的扩展和收养转移策略在临床前TNBC模型中表现出了希望。本综述汇编并讨论了有关GD T细胞主要亚组的现有文献,它们在癌症治疗中的作用,对肿瘤细胞细胞毒性和免疫调节的贡献,并提出了未来GD T细胞在TNBC中基于GD T细胞的潜在策略。
媒体联系人:Gina Kirchweger gina@lji.org 848.357.7481即时释放T细胞,T细胞上升以与肠道科学家的感染作斗争,展示了一个特殊的T细胞如何通过小肠里漫游,以打击ca la jolla,ca -your ut ut ut ut ut ut ut。围绕小肠排列的细胞必须平衡两个看似矛盾的工作:吸收食物中的营养,同时保持警惕的病原体试图入侵您的身体。“这是病原体可以潜入的表面,” La Jolla免疫学研究所(LJI)助理教授Miguel Reina-Campos博士说。 “对于免疫系统来说,这是一个巨大的挑战。”那么,免疫细胞如何确保肠道安全?由LJI,加州大学圣地亚哥分校的科学家领导的新研究和艾伦免疫学研究所表明,抗原病原体的免疫细胞称为组织居民记忆CD8 T细胞(T RM细胞)经历了令人惊讶的转化,并恢复了小肠中的感染。实际上,这些细胞实际上在组织中上升较高,以在病原体传播到更深,更脆弱的地区之前对抗感染。“肠道中的组织已经发展为为免疫细胞浸润提供信号 - 将免疫细胞放置在特定的地方,因此它们具有更好的阻止病原体的能力,” Reina-Campos说,他与联合首先研究的新自然研究的第一作者和UC Sanivo和UC Sanivo的Alexander Monell一起担任了新自然研究的第一作者,并获得了UC Sanivo和联合Aneror Author Author Authorian Authorian Anegianian Heeg,M.Div。 和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。 新发现增加了免疫细胞适应特定组织的越来越多的证据体。和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。新发现增加了免疫细胞适应特定组织的越来越多的证据体。Reina-campos认为这些“组织居住”的免疫细胞可能是未来癌症的特定器官肿瘤的关键参与者。
多发性骨髓瘤(MM)是浆细胞的恶性疾病,约占所有血液恶性肿瘤的10%,其特征是骨髓中恶性血浆细胞的克隆增殖。许多治疗策略,包括蛋白酶体抑制剂,免疫调节剂,针对CD38的单克隆抗体和自体干细胞移植,已延长了MM患者的中位存活率。然而,几乎所有MM患者都因耐药性而遭受疾病复发,并最终死于MM或与MM相关的并发症。嵌合抗原受体(CAR)T细胞治疗是MM的一种新型免疫疗法策略,在几项临床试验中表现出令人鼓舞的结果。However, the use of CAR T-cell therapy for the treatment of MM is still associated with several dif fi culties, including antigen escape, poor persistence, an immunosuppressive microenvironment, cytokine release syndrome, immune effector cell- associated neurotoxicity syndrome, CAR T-cell-associated encephalopathy syndrome, cytopenia, and infections.在这篇综述中,我们详细描述了MM中CAR T细胞的靶抗原。我们还全面讨论了CAR T细胞开发的最新创新,以改善临床效率和策略,以克服MM中CAR T细胞治疗的局限性。
同种异体造血干细胞移植(Allo-HSCT)是许多血液学恶性肿瘤的唯一治疗疗法,因此,移植 - 白细胞(GVL)效应在控制复发中起着关键作用。然而,GVL的成功受到移植物抗宿主病(GVHD)的阻碍,其中供体T细胞攻击受体中健康的组织。自然调节T细胞(TREG)抑制免疫反应的能力已被用作针对GVHD的治疗选择。仍然,评估Treg抑制GVHD的能力是否不会损害GVL的益处至关重要。动物模型中的初步研究表明,Treg可以在保存GVL时衰减GVHD,但根据肿瘤类型而变化。使用Treg作为GVHD预防或治疗的人类试验显示出令人鼓舞的结果,这强调了输注时间和Treg/TCON比率的重要性。在这篇综述中,我们讨论了可以使用旨在增强Treg输注后GVL的策略,以及提出的维持GVL对收养Treg转移效应的机制。为了优化Allo-HSCT中TREG给药的治疗结果,未来的努力应着重于为输注和评估其特异性抗原介导GVHD的抗原源,同时保留GVL响应。
抗PD-(L)1治疗在某些癌症患者中表现出了极大的效率。但是,癌症患者的显着比例没有反应。抗PD-(L)1治疗的另一种未满足的临床需求是治疗效果的动态监测。因此,鉴定可以在PD-(L)1治疗和及时监测PD-(L)1治疗的效率之前,可以将潜在响应者分层的生物标志物在临床环境中至关重要。通过液体活检对生物标志物的识别引起了极大的关注。在识别的生物标志物中,循环T细胞是最有前途的,因为它们对抗PD-(L)1疗法的不可或缺贡献是必不可少的。 目前的综述旨在彻底探索循环T细胞作为抗PD-(L)1治疗及其优势和局限性的生物标志物的潜力。,因为它们对抗PD-(L)1疗法的不可或缺贡献是必不可少的。目前的综述旨在彻底探索循环T细胞作为抗PD-(L)1治疗及其优势和局限性的生物标志物的潜力。
1医学系,路德维希 - 马克西米利人 - 穆斯蒂蒂蒂尼斯大学慕尼黑,慕尼黑,德国,德国,2个糖尿病学科,内科和肾脏科,内科和肾病学,Eberhard-karls-karls-karls-universitättounty,德国,德国,大学医学中心,大学医院,大学医院,大学医院,univerhard-karls-karls-karls-karls-universit;德国的图宾根,4糖尿病研究和代谢疾病研究所,赫尔姆霍尔兹中心,图宾根大学,图宾根大学,欧宾根大学,5个慈善机构 - 柏林大学医学中心,柏林伯林大学柏林和汉堡大学柏林大学柏林大学医学免疫学研究所,柏林柏林哥伦比亚郡医学院,柏林居民,伯林·伯林(Berlin Institute for Libin)。 Therapies (BCRT), Berlin, Germany, 7 IDM/FMEG Center of the Munich at the University of Tübingen, German Center for Diabetes (DZD), Tübingen, Germany, 8 Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany, 9 Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of医学,LMU慕尼黑,德国慕尼黑的PETTENKOFER公共卫生学院,德国糖尿病研究中心10号,德国Neuherberg,德国
在原核生物和真核生物中,大多数已鉴定的离子泵 ATPase 属于以下三种结构类型之一。(i)F1Fo ATPase(F 型)存在于线粒体内膜(2)、叶绿体类囊体膜(3)和细菌细胞质膜(4)中。(ii)E1E2 ATPase(P 型)存在于真菌(5)、植物(6)和动物的细胞质膜中[包括 Na',K4-ATPase(7)和 H +,K + -ATPase(8)],以及肌细胞的肌浆网(Ca 2+-ATPase)(9)和细菌细胞质膜(K+-ATPase)(10,11)。 (iii) 已鉴定出第三类 ATPase(V 型),并从真菌和植物液泡(参考文献 12 及其中的参考文献)、包被囊泡(13、14)和嗜铬颗粒(15、16)的膜中部分纯化。正如 Mellman 等人(17)所建议的,我们使用术语“液泡 ATPase”来指代第三类 ATPase。F1Fo ATPase 通常使用 H+ 的电化学梯度(18)或偶尔使用 Na+ 梯度(19)来合成 ATP。这种类型的酶也表现出 ATPase 活性,在某些情况下仅在用蛋白酶活化后才表现出 ATPase 活性(20)。叠氮化物和 N,N'-二环己基碳二酰亚胺可抑制 F1Fo ATPase 的酶活性;寡霉素也可抑制线粒体 ATPase(21)。在 E1E2 ATPases 中,ATP 水解释放的能量与阳离子跨膜转运偶联。酶循环通过构象状态,包括形成磷酸化中间体。酶活性不受叠氮化物或寡霉素的影响,但被钒酸盐特异性抑制,在大多数情况下被 N-乙基马来酰亚胺和异硫氰酸荧光素抑制,而对于 Na4 ,K4-ATPase,则被乌巴因抑制 (5-11)。液泡 ATPases 似乎会水解 ATP,产生质子梯度,用于酸化细胞内区室 (12、17、22)。这组 ATP 酶因其抑制剂特异性而与其他两组 ATP 酶区分开来。液泡 ATPase 不受叠氮化物、寡霉素、钒酸盐或乌巴因的抑制。相反,
